Fungrim home page

Fungrim entry: 77c324

zerosxC(x2x1)={φ,1φ}\mathop{\operatorname{zeros}\,}\limits_{x \in \mathbb{C}} \left({x}^{2} - x - 1\right) = \left\{\varphi, 1 - \varphi\right\}
\mathop{\operatorname{zeros}\,}\limits_{x \in \mathbb{C}} \left({x}^{2} - x - 1\right) = \left\{\varphi, 1 - \varphi\right\}
Fungrim symbol Notation Short description
Powab{a}^{b} Power
CCC\mathbb{C} Complex numbers
GoldenRatioφ\varphi The golden ratio (1.618...)
Source code for this entry:
    Formula(Equal(Zeros(Sub(Sub(Pow(x, 2), x), 1), x, Element(x, CC)), Set(GoldenRatio, Sub(1, GoldenRatio)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC