# Fungrim entry: 473c36

$\int_{-1}^{1} U_{n}\!\left(x\right) U_{m}\!\left(x\right) \sqrt{1 - {x}^{2}} \, dx = \frac{\pi}{2} \delta_{(n,m)}$
Assumptions:$n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, m \in \mathbb{Z}_{\ge 0}$
TeX:
\int_{-1}^{1} U_{n}\!\left(x\right) U_{m}\!\left(x\right) \sqrt{1 - {x}^{2}} \, dx = \frac{\pi}{2} \delta_{(n,m)}

n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, m \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol Notation Short description
ChebyshevU$U_{n}\!\left(x\right)$ Chebyshev polynomial of the second kind
Sqrt$\sqrt{z}$ Principal square root
Pow${a}^{b}$ Power
ConstPi$\pi$ The constant pi (3.14...)
KroneckerDelta$\delta_{(x,y)}$ Kronecker delta
ZZGreaterEqual$\mathbb{Z}_{\ge n}$ Integers greater than or equal to n
Source code for this entry:
Entry(ID("473c36"),
Formula(Equal(Integral(Mul(Mul(ChebyshevU(n, x), ChebyshevU(m, x)), Sqrt(Sub(1, Pow(x, 2)))), Tuple(x, -1, 1)), Mul(Div(ConstPi, 2), KroneckerDelta(n, m)))),
Variables(n, m),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(m, ZZGreaterEqual(0)))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC