Table of contents: Definitions - Cases reducible to the Gauss hypergeometric function - Incomplete integrals - Complete integrals - General formulas for the series - Symmetric formulas - Approximations by truncated series - Integral representations - Gauss hypergeometric series
Related topics: Carlson symmetric elliptic integrals
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
Entry(ID("b576e6"),
SymbolDefinition(CarlsonHypergeometricR, CarlsonHypergeometricR(Neg(a), b, z), "Carlson multivariate hypergeometric function"),
References("https://dlmf.nist.gov/19.19", "https://doi.org/10.6028/jres.107.034"))| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonHypergeometricT | TN(b,z) | Term in expansion of Carlson multivariate hypergeometric function |
Entry(ID("a82bd6"),
SymbolDefinition(CarlsonHypergeometricT, CarlsonHypergeometricT(N, b, z), "Term in expansion of Carlson multivariate hypergeometric function"))Related topics: Gauss hypergeometric function
R_C\!\left(1, x\right) = \,{}_2F_1\!\left(1, \frac{1}{2}, \frac{3}{2}, 1 - x\right)
x \in \mathbb{C}| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRC | RC(x,y) | Degenerate Carlson symmetric elliptic integral of the first kind |
| Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
| CC | C | Complex numbers |
Entry(ID("72b5bd"),
Formula(Equal(CarlsonRC(1, x), Hypergeometric2F1(1, Div(1, 2), Div(3, 2), Sub(1, x)))),
Variables(x),
Assumptions(Element(x, CC)))R_F\!\left(0, x, 1\right) = \frac{\pi}{2} \,{}_2F_1\!\left(\frac{1}{2}, \frac{1}{2}, 1, 1 - x\right)
x \in \mathbb{C}| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRF | RF(x,y,z) | Carlson symmetric elliptic integral of the first kind |
| Pi | π | The constant pi (3.14...) |
| Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
| CC | C | Complex numbers |
Entry(ID("b2fdfe"),
Formula(Equal(CarlsonRF(0, x, 1), Mul(Div(Pi, 2), Hypergeometric2F1(Div(1, 2), Div(1, 2), 1, Sub(1, x))))),
Variables(x),
Assumptions(Element(x, CC)))R_G\!\left(0, x, 1\right) = \frac{\pi}{4} \,{}_2F_1\!\left(-\frac{1}{2}, \frac{1}{2}, 1, 1 - x\right)
x \in \mathbb{C}| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRG | RG(x,y,z) | Carlson symmetric elliptic integral of the second kind |
| Pi | π | The constant pi (3.14...) |
| Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
| CC | C | Complex numbers |
Entry(ID("e98dd0"),
Formula(Equal(CarlsonRG(0, x, 1), Mul(Div(Pi, 4), Hypergeometric2F1(Neg(Div(1, 2)), Div(1, 2), 1, Sub(1, x))))),
Variables(x),
Assumptions(Element(x, CC)))R_D\!\left(0, x, 1\right) = \frac{3 \pi}{4} \,{}_2F_1\!\left(\frac{1}{2}, \frac{3}{2}, 2, 1 - x\right)
x \in \mathbb{C}| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRD | RD(x,y,z) | Degenerate Carlson symmetric elliptic integral of the third kind |
| Pi | π | The constant pi (3.14...) |
| Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
| CC | C | Complex numbers |
Entry(ID("9bfd88"),
Formula(Equal(CarlsonRD(0, x, 1), Mul(Div(Mul(3, Pi), 4), Hypergeometric2F1(Div(1, 2), Div(3, 2), 2, Sub(1, x))))),
Variables(x),
Assumptions(Element(x, CC)))R_D\!\left(0, 1, x\right) = \frac{3 \pi}{4 x} \,{}_2F_1\!\left(\frac{1}{2}, \frac{1}{2}, 2, 1 - x\right)
x \in \mathbb{C}| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRD | RD(x,y,z) | Degenerate Carlson symmetric elliptic integral of the third kind |
| Pi | π | The constant pi (3.14...) |
| Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
| CC | C | Complex numbers |
Entry(ID("bbf003"),
Formula(Equal(CarlsonRD(0, 1, x), Mul(Div(Mul(3, Pi), Mul(4, x)), Hypergeometric2F1(Div(1, 2), Div(1, 2), 2, Sub(1, x))))),
Variables(x),
Assumptions(Element(x, CC)))R_F\!\left(x, y, z\right) = R_{-1 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right], \left[x, y, z\right]\right)
x \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; \left(\left(x \ne 0 \;\mathbin{\operatorname{and}}\; y \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(x \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(y \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right)\right)| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRF | RF(x,y,z) | Carlson symmetric elliptic integral of the first kind |
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| CC | C | Complex numbers |
| OpenInterval | (a,b) | Open interval |
| Infinity | ∞ | Positive infinity |
Entry(ID("8f71cb"),
Formula(Equal(CarlsonRF(x, y, z), CarlsonHypergeometricR(Neg(Div(1, 2)), List(Div(1, 2), Div(1, 2), Div(1, 2)), List(x, y, z)))),
Variables(x, y, z),
Assumptions(And(Element(x, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(y, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Or(And(NotEqual(x, 0), NotEqual(y, 0)), And(NotEqual(x, 0), NotEqual(z, 0)), And(NotEqual(y, 0), NotEqual(z, 0))))))R_G\!\left(x, y, z\right) = R_{1 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right], \left[x, y, z\right]\right)
x \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right)| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRG | RG(x,y,z) | Carlson symmetric elliptic integral of the second kind |
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| CC | C | Complex numbers |
| OpenInterval | (a,b) | Open interval |
| Infinity | ∞ | Positive infinity |
Entry(ID("fda084"),
Formula(Equal(CarlsonRG(x, y, z), CarlsonHypergeometricR(Div(1, 2), List(Div(1, 2), Div(1, 2), Div(1, 2)), List(x, y, z)))),
Variables(x, y, z),
Assumptions(And(Element(x, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(y, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenInterval(Neg(Infinity), 0))))))R_J\!\left(x, y, z, w\right) = R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1\right], \left[x, y, z, w\right]\right)
x \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; w \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; \left(\left(x \ne 0 \;\mathbin{\operatorname{and}}\; y \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(x \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(y \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right)\right)| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRJ | RJ(x,y,z,w) | Carlson symmetric elliptic integral of the third kind |
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| CC | C | Complex numbers |
| OpenInterval | (a,b) | Open interval |
| Infinity | ∞ | Positive infinity |
| OpenClosedInterval | (a,b] | Open-closed interval |
Entry(ID("b2cd79"),
Formula(Equal(CarlsonRJ(x, y, z, w), CarlsonHypergeometricR(Neg(Div(3, 2)), List(Div(1, 2), Div(1, 2), Div(1, 2), 1), List(x, y, z, w)))),
Variables(x, y, z, w),
Assumptions(And(Element(x, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(y, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(w, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Or(And(NotEqual(x, 0), NotEqual(y, 0)), And(NotEqual(x, 0), NotEqual(z, 0)), And(NotEqual(y, 0), NotEqual(z, 0))))))R_J\!\left(x, y, z, w\right) = R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right], \left[x, y, z, w, w\right]\right)
x \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; w \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; \left(\left(x \ne 0 \;\mathbin{\operatorname{and}}\; y \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(x \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(y \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right)\right)| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRJ | RJ(x,y,z,w) | Carlson symmetric elliptic integral of the third kind |
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| CC | C | Complex numbers |
| OpenInterval | (a,b) | Open interval |
| Infinity | ∞ | Positive infinity |
| OpenClosedInterval | (a,b] | Open-closed interval |
Entry(ID("e93f43"),
Formula(Equal(CarlsonRJ(x, y, z, w), CarlsonHypergeometricR(Neg(Div(3, 2)), List(Div(1, 2), Div(1, 2), Div(1, 2), Div(1, 2), Div(1, 2)), List(x, y, z, w, w)))),
Variables(x, y, z, w),
Assumptions(And(Element(x, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(y, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(w, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Or(And(NotEqual(x, 0), NotEqual(y, 0)), And(NotEqual(x, 0), NotEqual(z, 0)), And(NotEqual(y, 0), NotEqual(z, 0))))))R_D\!\left(x, y, z\right) = R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{3}{2}\right], \left[x, y, z\right]\right)
x \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; \left(x \ne 0 \;\mathbin{\operatorname{or}}\; y \ne 0\right)| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRD | RD(x,y,z) | Degenerate Carlson symmetric elliptic integral of the third kind |
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| CC | C | Complex numbers |
| OpenInterval | (a,b) | Open interval |
| Infinity | ∞ | Positive infinity |
| OpenClosedInterval | (a,b] | Open-closed interval |
Entry(ID("8d304b"),
Formula(Equal(CarlsonRD(x, y, z), CarlsonHypergeometricR(Neg(Div(3, 2)), List(Div(1, 2), Div(1, 2), Div(3, 2)), List(x, y, z)))),
Variables(x, y, z),
Assumptions(And(Element(x, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(y, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Or(NotEqual(x, 0), NotEqual(y, 0)))))R_D\!\left(x, y, z\right) = R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right], \left[x, y, z, z, z\right]\right)
x \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; \left(x \ne 0 \;\mathbin{\operatorname{or}}\; y \ne 0\right)| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRD | RD(x,y,z) | Degenerate Carlson symmetric elliptic integral of the third kind |
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| CC | C | Complex numbers |
| OpenInterval | (a,b) | Open interval |
| Infinity | ∞ | Positive infinity |
| OpenClosedInterval | (a,b] | Open-closed interval |
Entry(ID("e1a3fb"),
Formula(Equal(CarlsonRD(x, y, z), CarlsonHypergeometricR(Neg(Div(3, 2)), List(Div(1, 2), Div(1, 2), Div(1, 2), Div(1, 2), Div(1, 2)), List(x, y, z, z, z)))),
Variables(x, y, z),
Assumptions(And(Element(x, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(y, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Or(NotEqual(x, 0), NotEqual(y, 0)))))R_C\!\left(x, y\right) = R_{-1 / 2}\!\left(\left[\frac{1}{2}, 1\right], \left[x, y\right]\right)
x \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \setminus \left(-\infty, 0\right]| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRC | RC(x,y) | Degenerate Carlson symmetric elliptic integral of the first kind |
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| CC | C | Complex numbers |
| OpenInterval | (a,b) | Open interval |
| Infinity | ∞ | Positive infinity |
| OpenClosedInterval | (a,b] | Open-closed interval |
Entry(ID("7ded8f"),
Formula(Equal(CarlsonRC(x, y), CarlsonHypergeometricR(Neg(Div(1, 2)), List(Div(1, 2), 1), List(x, y)))),
Variables(x, y),
Assumptions(And(Element(x, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(y, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))R_C\!\left(x, y\right) = R_{-1 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right], \left[x, y, y\right]\right)
x \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \setminus \left(-\infty, 0\right]| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRC | RC(x,y) | Degenerate Carlson symmetric elliptic integral of the first kind |
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| CC | C | Complex numbers |
| OpenInterval | (a,b) | Open interval |
| Infinity | ∞ | Positive infinity |
| OpenClosedInterval | (a,b] | Open-closed interval |
Entry(ID("42c7f1"),
Formula(Equal(CarlsonRC(x, y), CarlsonHypergeometricR(Neg(Div(1, 2)), List(Div(1, 2), Div(1, 2), Div(1, 2)), List(x, y, y)))),
Variables(x, y),
Assumptions(And(Element(x, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(y, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))R_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[0, z_{2}, z_{3}, \ldots, z_{n}\right]\right) = \frac{\mathrm{B}\!\left(a, c - b_{1}\right)}{\mathrm{B}\!\left(a, c\right)} R_{-a}\!\left(\left[b_{2}, b_{3}, \ldots, b_{n}\right], \left[z_{2}, z_{3}, \ldots, z_{n}\right]\right)\; \text{ where } c = -a + \sum_{k=1}^{n} b_{k}
a \in \mathbb{R} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \left(b_{k} \in \mathbb{R} \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \left(z_{k} \in \mathbb{C} \;\text{ for all } k \in \{2, 3, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \sum_{k=1}^{n} b_{k} > 0 \;\mathbin{\operatorname{and}}\; \sum_{k=2}^{n} b_{k} > a| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| BetaFunction | B(a,b) | Beta function |
| Sum | ∑nf(n) | Sum |
| RR | R | Real numbers |
| ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
| Range | {a,a+1,…,b} | Integers between given endpoints |
| CC | C | Complex numbers |
Entry(ID("cbcad9"),
Formula(Equal(CarlsonHypergeometricR(Neg(a), List(b_(k), For(k, 1, n)), List(0, Step(z_(k), For(k, 2, n)))), Where(Mul(Div(BetaFunction(a, Sub(c, b_(1))), BetaFunction(a, c)), CarlsonHypergeometricR(Neg(a), List(b_(k), For(k, 2, n)), List(z_(k), For(k, 2, n)))), Def(c, Add(Neg(a), Sum(b_(k), For(k, 1, n))))))),
Variables(a, b_, z_, n),
Assumptions(And(Element(a, RR), Element(n, ZZGreaterEqual(1)), All(Element(b_(k), RR), ForElement(k, Range(1, n))), All(Element(z_(k), CC), ForElement(k, Range(2, n))), Greater(Sum(b_(k), For(k, 1, n)), 0), Greater(Sum(b_(k), For(k, 2, n)), a))),
References("https://dlmf.nist.gov/19.16"))R_F\!\left(0, y, z\right) = \frac{\pi}{2} R_{-1 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}\right], \left[y, z\right]\right)
y \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right]| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRF | RF(x,y,z) | Carlson symmetric elliptic integral of the first kind |
| Pi | π | The constant pi (3.14...) |
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| CC | C | Complex numbers |
| OpenClosedInterval | (a,b] | Open-closed interval |
| Infinity | ∞ | Positive infinity |
Entry(ID("d0c9ff"),
Formula(Equal(CarlsonRF(0, y, z), Mul(Div(Pi, 2), CarlsonHypergeometricR(Neg(Div(1, 2)), List(Div(1, 2), Div(1, 2)), List(y, z))))),
Variables(y, z),
Assumptions(And(Element(y, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))R_D\!\left(0, y, z\right) = \frac{3 \pi}{4} R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{3}{2}\right], \left[y, z\right]\right)
y \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right]| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRD | RD(x,y,z) | Degenerate Carlson symmetric elliptic integral of the third kind |
| Pi | π | The constant pi (3.14...) |
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| CC | C | Complex numbers |
| OpenClosedInterval | (a,b] | Open-closed interval |
| Infinity | ∞ | Positive infinity |
Entry(ID("00c331"),
Formula(Equal(CarlsonRD(0, y, z), Mul(Div(Mul(3, Pi), 4), CarlsonHypergeometricR(Neg(Div(3, 2)), List(Div(1, 2), Div(3, 2)), List(y, z))))),
Variables(y, z),
Assumptions(And(Element(y, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))R_D\!\left(0, y, z\right) = \frac{3 \pi}{4} R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right], \left[y, z, z, z\right]\right)
y \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right]| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRD | RD(x,y,z) | Degenerate Carlson symmetric elliptic integral of the third kind |
| Pi | π | The constant pi (3.14...) |
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| CC | C | Complex numbers |
| OpenClosedInterval | (a,b] | Open-closed interval |
| Infinity | ∞ | Positive infinity |
Entry(ID("37ffb7"),
Formula(Equal(CarlsonRD(0, y, z), Mul(Div(Mul(3, Pi), 4), CarlsonHypergeometricR(Neg(Div(3, 2)), List(Div(1, 2), Div(1, 2), Div(1, 2), Div(1, 2)), List(y, z, z, z))))),
Variables(y, z),
Assumptions(And(Element(y, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))R_J\!\left(0, y, z, w\right) = \frac{3 \pi}{4} R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, 1\right], \left[y, z, w\right]\right)
y \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; w \in \mathbb{C} \setminus \left(-\infty, 0\right]| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRJ | RJ(x,y,z,w) | Carlson symmetric elliptic integral of the third kind |
| Pi | π | The constant pi (3.14...) |
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| CC | C | Complex numbers |
| OpenClosedInterval | (a,b] | Open-closed interval |
| Infinity | ∞ | Positive infinity |
Entry(ID("5a8f57"),
Formula(Equal(CarlsonRJ(0, y, z, w), Mul(Div(Mul(3, Pi), 4), CarlsonHypergeometricR(Neg(Div(3, 2)), List(Div(1, 2), Div(1, 2), 1), List(y, z, w))))),
Variables(y, z, w),
Assumptions(And(Element(y, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(w, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))R_J\!\left(0, y, z, w\right) = \frac{3 \pi}{4} R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right], \left[y, z, w, w\right]\right)
y \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; w \in \mathbb{C} \setminus \left(-\infty, 0\right]| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRJ | RJ(x,y,z,w) | Carlson symmetric elliptic integral of the third kind |
| Pi | π | The constant pi (3.14...) |
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| CC | C | Complex numbers |
| OpenClosedInterval | (a,b] | Open-closed interval |
| Infinity | ∞ | Positive infinity |
Entry(ID("7314c4"),
Formula(Equal(CarlsonRJ(0, y, z, w), Mul(Div(Mul(3, Pi), 4), CarlsonHypergeometricR(Neg(Div(3, 2)), List(Div(1, 2), Div(1, 2), Div(1, 2), Div(1, 2)), List(y, z, w, w))))),
Variables(y, z, w),
Assumptions(And(Element(y, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(w, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))R_G\!\left(0, y, z\right) = \frac{\pi}{4} R_{1 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}\right], \left[y, z\right]\right)
y \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right]| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRG | RG(x,y,z) | Carlson symmetric elliptic integral of the second kind |
| Pi | π | The constant pi (3.14...) |
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| CC | C | Complex numbers |
| OpenClosedInterval | (a,b] | Open-closed interval |
| Infinity | ∞ | Positive infinity |
Entry(ID("b4a735"),
Formula(Equal(CarlsonRG(0, y, z), Mul(Div(Pi, 4), CarlsonHypergeometricR(Div(1, 2), List(Div(1, 2), Div(1, 2)), List(y, z))))),
Variables(y, z),
Assumptions(And(Element(y, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))T_{N}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = \sum_{\textstyle{\left(m_{1}, m_{2}, \ldots, m_{n}\right) \in {\left(\mathbb{Z}_{\ge 0}\right)}^{n} \atop \sum_{k=1}^{n} m_{k} = N}} \prod_{k=1}^{n} \frac{\left(b_{k}\right)_{m_{k}}}{\left(m_{k}\right)!} z_{k}^{m_{k}}
n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; \left(b_{k} \in \mathbb{C} \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \left(z_{k} \in \mathbb{C} \;\text{ for all } k \in \{1, 2, \ldots, n\}\right)| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonHypergeometricT | TN(b,z) | Term in expansion of Carlson multivariate hypergeometric function |
| Sum | ∑nf(n) | Sum |
| Product | ∏nf(n) | Product |
| RisingFactorial | (z)k | Rising factorial |
| Factorial | n! | Factorial |
| Pow | ab | Power |
| ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
| CC | C | Complex numbers |
| Range | {a,a+1,…,b} | Integers between given endpoints |
Entry(ID("da47f6"),
Formula(Equal(CarlsonHypergeometricT(N, List(b_(k), For(k, 1, n)), List(z_(k), For(k, 1, n))), Sum(Product(Mul(Div(RisingFactorial(b_(k), m_(k)), Factorial(m_(k))), Pow(z_(k), m_(k))), For(k, 1, n)), ForElement(Tuple(m_(k), For(k, 1, n)), CartesianPower(Parentheses(ZZGreaterEqual(0)), n)), Equal(Sum(m_(k), For(k, 1, n)), N)))),
Variables(n, N, b_, z_),
Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(N, ZZGreaterEqual(0)), All(Element(b_(k), CC), ForElement(k, Range(1, n))), All(Element(z_(k), CC), ForElement(k, Range(1, n))))))R_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = \sum_{N=0}^{\infty} \frac{\left(a\right)_{N}}{\left(c\right)_{N}} T_{N}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[1 - z_{1}, 1 - z_{2}, \ldots, 1 - z_{n}\right]\right)\; \text{ where } c = \sum_{k=1}^{n} b_{k}
a \in \mathbb{R} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \left(b_{k} \in \mathbb{R} \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \left(z_{k} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|1 - z_{k}\right| < 1 \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \sum_{k=1}^{n} b_{k} > 0 \;\mathbin{\operatorname{and}}\; \left(\operatorname{Re}\!\left(z_{k}\right) > 0 \;\text{ for all } k \in \{1, 2, \ldots, n\}\right)| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| Sum | ∑nf(n) | Sum |
| RisingFactorial | (z)k | Rising factorial |
| CarlsonHypergeometricT | TN(b,z) | Term in expansion of Carlson multivariate hypergeometric function |
| Infinity | ∞ | Positive infinity |
| RR | R | Real numbers |
| ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
| Range | {a,a+1,…,b} | Integers between given endpoints |
| CC | C | Complex numbers |
| Abs | ∣z∣ | Absolute value |
| Re | Re(z) | Real part |
Entry(ID("4cb707"),
Formula(Where(Equal(CarlsonHypergeometricR(Neg(a), List(b_(k), For(k, 1, n)), List(z_(k), For(k, 1, n))), Sum(Mul(Div(RisingFactorial(a, N), RisingFactorial(c, N)), CarlsonHypergeometricT(N, List(b_(k), For(k, 1, n)), List(Sub(1, z_(k)), For(k, 1, n)))), For(N, 0, Infinity))), Def(c, Sum(b_(k), For(k, 1, n))))),
Variables(a, b_, z_, n),
Assumptions(And(Element(a, RR), Element(n, ZZGreaterEqual(1)), All(Element(b_(k), RR), ForElement(k, Range(1, n))), All(And(Element(z_(k), CC), Less(Abs(Sub(1, z_(k))), 1)), ForElement(k, Range(1, n))), Greater(Sum(b_(k), For(k, 1, n)), 0), All(Greater(Re(z_(k)), 0), ForElement(k, Range(1, n))))))R_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = z_{n}^{-a} \sum_{N=0}^{\infty} \frac{\left(a\right)_{N}}{\left(c\right)_{N}} T_{N}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n - 1}\right], \left[1 - \frac{z_{1}}{z_{n}}, 1 - \frac{z_{2}}{z_{n}}, \ldots, 1 - \frac{z_{n - 1}}{z_{n}}\right]\right)\; \text{ where } c = \sum_{k=1}^{n} b_{k}
a \in \mathbb{R} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \left(b_{k} \in \mathbb{R} \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; z_{n} \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; \left(z_{k} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|1 - \frac{z_{k}}{z_{n}}\right| < 1 \;\text{ for all } k \in \{1, 2, \ldots, n - 1\}\right) \;\mathbin{\operatorname{and}}\; \sum_{k=1}^{n} b_{k} > 0 \;\mathbin{\operatorname{and}}\; \left(\operatorname{Re}\!\left(z_{k}\right) > 0 \;\text{ for all } k \in \{1, 2, \ldots, n\}\right)| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| Pow | ab | Power |
| Sum | ∑nf(n) | Sum |
| RisingFactorial | (z)k | Rising factorial |
| CarlsonHypergeometricT | TN(b,z) | Term in expansion of Carlson multivariate hypergeometric function |
| Infinity | ∞ | Positive infinity |
| RR | R | Real numbers |
| ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
| Range | {a,a+1,…,b} | Integers between given endpoints |
| CC | C | Complex numbers |
| Abs | ∣z∣ | Absolute value |
| Re | Re(z) | Real part |
Entry(ID("2443de"),
Formula(Where(Equal(CarlsonHypergeometricR(Neg(a), List(b_(k), For(k, 1, n)), List(z_(k), For(k, 1, n))), Mul(Pow(z_(n), Neg(a)), Sum(Mul(Div(RisingFactorial(a, N), RisingFactorial(c, N)), CarlsonHypergeometricT(N, List(b_(k), For(k, 1, Sub(n, 1))), List(Sub(1, Div(z_(k), z_(n))), For(k, 1, Sub(n, 1))))), For(N, 0, Infinity)))), Def(c, Sum(b_(k), For(k, 1, n))))),
Variables(a, b_, z_, n),
Assumptions(And(Element(a, RR), Element(n, ZZGreaterEqual(1)), All(Element(b_(k), RR), ForElement(k, Range(1, n))), Element(z_(n), SetMinus(CC, Set(0))), All(And(Element(z_(k), CC), Less(Abs(Sub(1, Div(z_(k), z_(n)))), 1)), ForElement(k, Range(1, Sub(n, 1)))), Greater(Sum(b_(k), For(k, 1, n)), 0), All(Greater(Re(z_(k)), 0), ForElement(k, Range(1, n))))))R_{-a}\!\left(\left[\underbrace{\beta, \ldots, \beta}_{n \text{ times}}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = {A}^{-a} R_{-a}\!\left(\left[\underbrace{\beta, \ldots, \beta}_{n \text{ times}}\right], \left[\frac{z_{1}}{A}, \frac{z_{2}}{A}, \ldots, \frac{z_{n}}{A}\right]\right)\; \text{ where } A = \frac{1}{n} \sum_{k=1}^{n} z_{k}
a \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \beta \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \left(z_{k} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|1 - \frac{n z_{k}}{\sum_{j=1}^{n} z_{j}}\right| < 1 \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \left(\operatorname{Re}\!\left(z_{k}\right) > 0 \;\text{ for all } k \in \{1, 2, \ldots, n\}\right)| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| Pow | ab | Power |
| Sum | ∑nf(n) | Sum |
| RR | R | Real numbers |
| OpenInterval | (a,b) | Open interval |
| Infinity | ∞ | Positive infinity |
| ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
| CC | C | Complex numbers |
| Abs | ∣z∣ | Absolute value |
| Range | {a,a+1,…,b} | Integers between given endpoints |
| Re | Re(z) | Real part |
Entry(ID("13f252"),
Formula(Where(Equal(CarlsonHypergeometricR(Neg(a), List(Repeat(beta, n)), List(z_(k), For(k, 1, n))), Mul(Pow(A, Neg(a)), CarlsonHypergeometricR(Neg(a), List(Repeat(beta, n)), List(Div(z_(k), A), For(k, 1, n))))), Def(A, Mul(Div(1, n), Sum(z_(k), For(k, 1, n)))))),
Variables(a, beta, z_, n),
Assumptions(And(Element(a, RR), Element(beta, OpenInterval(0, Infinity)), Element(n, ZZGreaterEqual(1)), All(And(Element(z_(k), CC), Less(Abs(Sub(1, Div(Mul(n, z_(k)), Sum(z_(j), For(j, 1, n))))), 1)), ForElement(k, Range(1, n))), All(Greater(Re(z_(k)), 0), ForElement(k, Range(1, n))))))R_{-a}\!\left(\left[\underbrace{\beta, \ldots, \beta}_{n \text{ times}}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = {A}^{-a} \sum_{N=0}^{\infty} \frac{\left(a\right)_{N}}{\left(n \beta\right)_{N}} T_{N}\!\left(\left[\underbrace{\beta, \ldots, \beta}_{n \text{ times}}\right], \left[1 - \frac{z_{1}}{A}, 1 - \frac{z_{2}}{A}, \ldots, 1 - \frac{z_{n}}{A}\right]\right)\; \text{ where } A = \frac{1}{n} \sum_{k=1}^{n} z_{k}
a \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \beta \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \left(z_{k} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|1 - \frac{n z_{k}}{\sum_{j=1}^{n} z_{j}}\right| < 1 \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \left(\operatorname{Re}\!\left(z_{k}\right) > 0 \;\text{ for all } k \in \{1, 2, \ldots, n\}\right)| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| Pow | ab | Power |
| Sum | ∑nf(n) | Sum |
| RisingFactorial | (z)k | Rising factorial |
| CarlsonHypergeometricT | TN(b,z) | Term in expansion of Carlson multivariate hypergeometric function |
| Infinity | ∞ | Positive infinity |
| RR | R | Real numbers |
| OpenInterval | (a,b) | Open interval |
| ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
| CC | C | Complex numbers |
| Abs | ∣z∣ | Absolute value |
| Range | {a,a+1,…,b} | Integers between given endpoints |
| Re | Re(z) | Real part |
Entry(ID("a21395"),
Formula(Where(Equal(CarlsonHypergeometricR(Neg(a), List(Repeat(beta, n)), List(z_(k), For(k, 1, n))), Mul(Pow(A, Neg(a)), Sum(Mul(Div(RisingFactorial(a, N), RisingFactorial(Mul(n, beta), N)), CarlsonHypergeometricT(N, List(Repeat(beta, n)), List(Sub(1, Div(z_(k), A)), For(k, 1, n)))), For(N, 0, Infinity)))), Def(A, Mul(Div(1, n), Sum(z_(k), For(k, 1, n)))))),
Variables(a, beta, z_, n),
Assumptions(And(Element(a, RR), Element(beta, OpenInterval(0, Infinity)), Element(n, ZZGreaterEqual(1)), All(And(Element(z_(k), CC), Less(Abs(Sub(1, Div(Mul(n, z_(k)), Sum(z_(j), For(j, 1, n))))), 1)), ForElement(k, Range(1, n))), All(Greater(Re(z_(k)), 0), ForElement(k, Range(1, n))))))T_{N}\!\left(\left[\underbrace{\beta, \ldots, \beta}_{n \text{ times}}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = \sum_{\textstyle{\left(m_{1}, m_{2}, \ldots, m_{n}\right) \in {\left(\mathbb{Z}_{\ge 0}\right)}^{n} \atop \sum_{k=1}^{n} k m_{k} = N}} {\left(-1\right)}^{M + N} \left(\beta\right)_{M} \prod_{k=1}^{n} \frac{e_{k}^{m_{k}}\!\left(\left[z_{1}, z_{2}, \ldots, z_{n}\right]\right)}{\left(m_{k}\right)!}\; \text{ where } M = \sum_{k=1}^{n} m_{k}
n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \beta \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; \left(z_{k} \in \mathbb{C} \;\text{ for all } k \in \{1, 2, \ldots, n\}\right)| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonHypergeometricT | TN(b,z) | Term in expansion of Carlson multivariate hypergeometric function |
| Sum | ∑nf(n) | Sum |
| Pow | ab | Power |
| RisingFactorial | (z)k | Rising factorial |
| Product | ∏nf(n) | Product |
| Factorial | n! | Factorial |
| ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
| OpenInterval | (a,b) | Open interval |
| Infinity | ∞ | Positive infinity |
| CC | C | Complex numbers |
| Range | {a,a+1,…,b} | Integers between given endpoints |
Entry(ID("0a7f30"),
Formula(Equal(CarlsonHypergeometricT(N, List(Repeat(beta, n)), List(z_(k), For(k, 1, n))), Sum(Where(Mul(Mul(Pow(-1, Add(M, N)), RisingFactorial(beta, M)), Product(Div(Pow(SymmetricPolynomial(k, List(z_(k), For(k, 1, n))), m_(k)), Factorial(m_(k))), For(k, 1, n))), Def(M, Sum(m_(k), For(k, 1, n)))), ForElement(Tuple(m_(k), For(k, 1, n)), CartesianPower(Parentheses(ZZGreaterEqual(0)), n)), Equal(Sum(Mul(k, m_(k)), For(k, 1, n)), N)))),
Variables(n, beta, N, z_),
Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(beta, OpenInterval(0, Infinity)), Element(N, ZZGreaterEqual(0)), All(Element(z_(k), CC), ForElement(k, Range(1, n))))))R_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[\lambda z_{1}, \lambda z_{2}, \ldots, \lambda z_{n}\right]\right) = {\lambda}^{-a} R_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right)
a \in \mathbb{R} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \left(b_{k} \in \mathbb{R} \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \left(z_{k} \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \sum_{k=1}^{n} b_{k} > a > 0 \;\mathbin{\operatorname{and}}\; \lambda \in \left(0, \infty\right)| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| Pow | ab | Power |
| RR | R | Real numbers |
| ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
| Range | {a,a+1,…,b} | Integers between given endpoints |
| CC | C | Complex numbers |
| OpenClosedInterval | (a,b] | Open-closed interval |
| Infinity | ∞ | Positive infinity |
| Sum | ∑nf(n) | Sum |
| OpenInterval | (a,b) | Open interval |
Entry(ID("2c1df7"),
Formula(Equal(CarlsonHypergeometricR(Neg(a), List(b_(k), For(k, 1, n)), List(Mul(lamda, z_(k)), For(k, 1, n))), Mul(Pow(lamda, Neg(a)), CarlsonHypergeometricR(Neg(a), List(b_(k), For(k, 1, n)), List(z_(k), For(k, 1, n)))))),
Variables(a, b_, z_, n, lamda),
Assumptions(And(Element(a, RR), Element(n, ZZGreaterEqual(1)), All(Element(b_(k), RR), ForElement(k, Range(1, n))), All(Element(z_(k), SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), ForElement(k, Range(1, n))), Greater(Sum(b_(k), For(k, 1, n)), a, 0), Element(lamda, OpenInterval(0, Infinity)))))R_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[\underbrace{z, \ldots, z}_{n \text{ times}}\right]\right) = {z}^{-a}
a \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \left(b_{k} \in \mathbb{R} \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \sum_{k=1}^{n} b_{k} > a > 0 \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right]| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| Pow | ab | Power |
| RR | R | Real numbers |
| Range | {a,a+1,…,b} | Integers between given endpoints |
| Sum | ∑nf(n) | Sum |
| CC | C | Complex numbers |
| OpenClosedInterval | (a,b] | Open-closed interval |
| Infinity | ∞ | Positive infinity |
Entry(ID("b81ca0"),
Formula(Equal(CarlsonHypergeometricR(Neg(a), List(b_(k), For(k, 1, n)), List(Repeat(z, n))), Pow(z, Neg(a)))),
Variables(a, b_, n, z),
Assumptions(And(Element(a, RR), All(Element(b_(k), RR), ForElement(k, Range(1, n))), Greater(Sum(b_(k), For(k, 1, n)), a, 0), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))\left|R_{-a}\!\left(\left[\underbrace{\beta, \ldots, \beta}_{n \text{ times}}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) - {A}^{-a} \sum_{N=0}^{K - 1} \frac{\left(a\right)_{N}}{\left(n \beta\right)_{N}} T_{N}\!\left(\left[\underbrace{\beta, \ldots, \beta}_{n \text{ times}}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right)\right| \le \frac{\left|{A}^{-a}\right| \left(\left|a\right|\right)_{K} {M}^{K}}{K ! {\left(1 - M\right)}^{\max\left(\left|a\right|, 1\right)}}\; \text{ where } A = \frac{1}{n} \sum_{k=1}^{n} z_{k},\;Z_{k} = 1 - \frac{z_{k}}{A},\;M = \max\!\left(\left|Z_{1}\right|, \left|Z_{2}\right|, \ldots, \left|Z_{n}\right|\right)
a \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \beta \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; K \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \left(z_{k} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|1 - \frac{n z_{k}}{\sum_{j=1}^{n} z_{j}}\right| < 1 \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \left(\operatorname{Re}\!\left(z_{k}\right) > 0 \;\text{ for all } k \in \{1, 2, \ldots, n\}\right)| Fungrim symbol | Notation | Short description |
|---|---|---|
| Abs | ∣z∣ | Absolute value |
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| Pow | ab | Power |
| Sum | ∑nf(n) | Sum |
| RisingFactorial | (z)k | Rising factorial |
| CarlsonHypergeometricT | TN(b,z) | Term in expansion of Carlson multivariate hypergeometric function |
| Factorial | n! | Factorial |
| RR | R | Real numbers |
| OpenInterval | (a,b) | Open interval |
| Infinity | ∞ | Positive infinity |
| ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
| CC | C | Complex numbers |
| Range | {a,a+1,…,b} | Integers between given endpoints |
| Re | Re(z) | Real part |
Entry(ID("926b36"),
Formula(Where(LessEqual(Abs(Sub(CarlsonHypergeometricR(Neg(a), List(Repeat(beta, n)), List(z_(k), For(k, 1, n))), Mul(Pow(A, Neg(a)), Sum(Mul(Div(RisingFactorial(a, N), RisingFactorial(Mul(n, beta), N)), CarlsonHypergeometricT(N, List(Repeat(beta, n)), List(z_(k), For(k, 1, n)))), For(N, 0, Sub(K, 1)))))), Div(Mul(Mul(Abs(Pow(A, Neg(a))), RisingFactorial(Abs(a), K)), Pow(M, K)), Mul(Factorial(K), Pow(Sub(1, M), Max(Abs(a), 1))))), Def(A, Mul(Div(1, n), Sum(z_(k), For(k, 1, n)))), Def(Z_(k), Sub(1, Div(z_(k), A))), Def(M, Max(Step(Abs(Z_(k)), For(k, 1, n)))))),
Variables(a, beta, z_, n, K),
Assumptions(And(Element(a, RR), Element(beta, OpenInterval(0, Infinity)), Element(n, ZZGreaterEqual(1)), Element(K, ZZGreaterEqual(1)), All(And(Element(z_(k), CC), Less(Abs(Sub(1, Div(Mul(n, z_(k)), Sum(z_(j), For(j, 1, n))))), 1)), ForElement(k, Range(1, n))), All(Greater(Re(z_(k)), 0), ForElement(k, Range(1, n))))),
References("https://doi.org/10.6028/jres.107.034"))\left|R_F\!\left(x, y, z\right) - {A}^{-1 / 2} \left(1 - \frac{E}{10} + \frac{F}{14} + \frac{{E}^{2}}{24} - \frac{3 E F}{44} - \frac{5 {E}^{3}}{208} + \frac{3 {F}^{2}}{104} + \frac{{E}^{2} F}{16}\right)\right| \le \frac{0.2 \left|{A}^{-1 / 2}\right| {M}^{8}}{1 - M}\; \text{ where } A = \frac{x + y + z}{3},\;X = 1 - \frac{x}{A},\;Y = 1 - \frac{y}{A},\;Z = 1 - \frac{z}{A},\;E = X Y + X Z + Y Z,\;F = X Y Z,\;M = \max\!\left(\left|X\right|, \left|Y\right|, \left|Z\right|\right)
x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(\left(x \ne 0 \;\mathbin{\operatorname{and}}\; y \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(x \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(y \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right)\right) \;\mathbin{\operatorname{and}}\; \max\!\left(\left|\arg(x) - \arg(y)\right|, \left|\arg(x) - \arg(z)\right|, \left|\arg(y) - \arg(z)\right|\right) < \pi \;\mathbin{\operatorname{and}}\; \left|1 - \frac{3 x}{x + y + z}\right| < 1 \;\mathbin{\operatorname{and}}\; \left|1 - \frac{3 y}{x + y + z}\right| < 1 \;\mathbin{\operatorname{and}}\; \left|1 - \frac{3 z}{x + y + z}\right| < 1| Fungrim symbol | Notation | Short description |
|---|---|---|
| Abs | ∣z∣ | Absolute value |
| CarlsonRF | RF(x,y,z) | Carlson symmetric elliptic integral of the first kind |
| Pow | ab | Power |
| CC | C | Complex numbers |
| Arg | arg(z) | Complex argument |
| Pi | π | The constant pi (3.14...) |
Entry(ID("799894"),
Formula(Where(LessEqual(Abs(Sub(CarlsonRF(x, y, z), Mul(Pow(A, Neg(Div(1, 2))), Add(Add(Sub(Sub(Add(Add(Sub(1, Div(E, 10)), Div(F, 14)), Div(Pow(E, 2), 24)), Div(Mul(Mul(3, E), F), 44)), Div(Mul(5, Pow(E, 3)), 208)), Div(Mul(3, Pow(F, 2)), 104)), Div(Mul(Pow(E, 2), F), 16))))), Div(Mul(Mul(Decimal("0.2"), Abs(Pow(A, Neg(Div(1, 2))))), Pow(M, 8)), Sub(1, M))), Def(A, Div(Add(Add(x, y), z), 3)), Def(X, Sub(1, Div(x, A))), Def(Y, Sub(1, Div(y, A))), Def(Z, Sub(1, Div(z, A))), Def(E, Add(Add(Mul(X, Y), Mul(X, Z)), Mul(Y, Z))), Def(F, Mul(Mul(X, Y), Z)), Def(M, Max(Abs(X), Abs(Y), Abs(Z))))),
Variables(x, y, z),
Assumptions(And(Element(x, CC), Element(y, CC), Element(z, CC), Or(And(NotEqual(x, 0), NotEqual(y, 0)), And(NotEqual(x, 0), NotEqual(z, 0)), And(NotEqual(y, 0), NotEqual(z, 0))), Less(Max(Abs(Sub(Arg(x), Arg(y))), Abs(Sub(Arg(x), Arg(z))), Abs(Sub(Arg(y), Arg(z)))), Pi), Less(Abs(Sub(1, Div(Mul(3, x), Add(Add(x, y), z)))), 1), Less(Abs(Sub(1, Div(Mul(3, y), Add(Add(x, y), z)))), 1), Less(Abs(Sub(1, Div(Mul(3, z), Add(Add(x, y), z)))), 1))),
References("https://doi.org/10.6028/jres.107.034"))\left|R_J\!\left(x, y, z, w\right) - {A}^{-3 / 2} \left(1 - \frac{3 E}{14} + \frac{F}{6} + \frac{9 {E}^{2}}{88} - \frac{3 G}{22} - \frac{9 E F}{52} + \frac{3 H}{26} - \frac{{E}^{3}}{16} + \frac{3 {F}^{2}}{40} + \frac{3 E G}{20} + \frac{45 {E}^{2} F}{272} - \frac{9 F G}{68} - \frac{9 E H}{68}\right)\right| \le \frac{3.4 \left|{A}^{-3 / 2}\right| {M}^{8}}{{\left(1 - M\right)}^{3 / 2}}\; \text{ where } A = \frac{x + y + z + 2 w}{5},\;X = 1 - \frac{x}{A},\;Y = 1 - \frac{y}{A},\;Z = 1 - \frac{z}{A},\;W = \frac{\left(-X - Y - Z\right)}{2},\;E = X Y + X Z + Y Z - 3 {W}^{2},\;F = X Y Z + 2 E W + 4 {W}^{3},\;G = \left(2 X Y Z + E W + 3 {W}^{3}\right) W,\;H = X Y Z {W}^{2},\;M = \max\!\left(\left|X\right|, \left|Y\right|, \left|Z\right|, \left|W\right|\right)
x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; w \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(x) \ge 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(y) \ge 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) \ge 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(w) > 0 \;\mathbin{\operatorname{and}}\; \left(\left(x \ne 0 \;\mathbin{\operatorname{and}}\; y \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(x \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(y \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right)\right) \;\mathbin{\operatorname{and}}\; \left|1 - \frac{5 x}{x + y + z + 2 w}\right| < 1 \;\mathbin{\operatorname{and}}\; \left|1 - \frac{5 y}{x + y + z + 2 w}\right| < 1 \;\mathbin{\operatorname{and}}\; \left|1 - \frac{5 z}{x + y + z + 2 w}\right| < 1 \;\mathbin{\operatorname{and}}\; \left|1 - \frac{5 z}{x + y + z + 2 w}\right| < 1| Fungrim symbol | Notation | Short description |
|---|---|---|
| Abs | ∣z∣ | Absolute value |
| CarlsonRJ | RJ(x,y,z,w) | Carlson symmetric elliptic integral of the third kind |
| Pow | ab | Power |
| CC | C | Complex numbers |
| Re | Re(z) | Real part |
Entry(ID("618a9f"),
Formula(Where(LessEqual(Abs(Sub(CarlsonRJ(x, y, z, w), Mul(Pow(A, Neg(Div(3, 2))), Sub(Sub(Add(Add(Add(Sub(Add(Sub(Sub(Add(Add(Sub(1, Div(Mul(3, E), 14)), Div(F, 6)), Div(Mul(9, Pow(E, 2)), 88)), Div(Mul(3, G), 22)), Div(Mul(Mul(9, E), F), 52)), Div(Mul(3, H), 26)), Div(Pow(E, 3), 16)), Div(Mul(3, Pow(F, 2)), 40)), Div(Mul(Mul(3, E), G), 20)), Div(Mul(Mul(45, Pow(E, 2)), F), 272)), Div(Mul(Mul(9, F), G), 68)), Div(Mul(Mul(9, E), H), 68))))), Div(Mul(Mul(Decimal("3.4"), Abs(Pow(A, Neg(Div(3, 2))))), Pow(M, 8)), Pow(Sub(1, M), Div(3, 2)))), Def(A, Div(Add(Add(Add(x, y), z), Mul(2, w)), 5)), Def(X, Sub(1, Div(x, A))), Def(Y, Sub(1, Div(y, A))), Def(Z, Sub(1, Div(z, A))), Def(W, Div(Parentheses(Sub(Sub(Neg(X), Y), Z)), 2)), Def(E, Sub(Add(Add(Mul(X, Y), Mul(X, Z)), Mul(Y, Z)), Mul(3, Pow(W, 2)))), Def(F, Add(Add(Mul(Mul(X, Y), Z), Mul(Mul(2, E), W)), Mul(4, Pow(W, 3)))), Def(G, Mul(Add(Add(Mul(Mul(Mul(2, X), Y), Z), Mul(E, W)), Mul(3, Pow(W, 3))), W)), Def(H, Mul(Mul(Mul(X, Y), Z), Pow(W, 2))), Def(M, Max(Abs(X), Abs(Y), Abs(Z), Abs(W))))),
Variables(x, y, z, w),
Assumptions(And(Element(x, CC), Element(y, CC), Element(z, CC), Element(w, CC), GreaterEqual(Re(x), 0), GreaterEqual(Re(y), 0), GreaterEqual(Re(z), 0), Greater(Re(w), 0), Or(And(NotEqual(x, 0), NotEqual(y, 0)), And(NotEqual(x, 0), NotEqual(z, 0)), And(NotEqual(y, 0), NotEqual(z, 0))), Less(Abs(Sub(1, Div(Mul(5, x), Add(Add(Add(x, y), z), Mul(2, w))))), 1), Less(Abs(Sub(1, Div(Mul(5, y), Add(Add(Add(x, y), z), Mul(2, w))))), 1), Less(Abs(Sub(1, Div(Mul(5, z), Add(Add(Add(x, y), z), Mul(2, w))))), 1), Less(Abs(Sub(1, Div(Mul(5, z), Add(Add(Add(x, y), z), Mul(2, w))))), 1))),
References("https://doi.org/10.6028/jres.107.034"))R_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = \frac{1}{\mathrm{B}\!\left(a, c\right)} \int_{0}^{\infty} {t}^{c - 1} \prod_{k=1}^{n} {\left(t + z_{k}\right)}^{-b_{k}} \, dt\; \text{ where } c = -a + \sum_{j=1}^{n} b_{j}
a \in \mathbb{R} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \left(b_{k} \in \mathbb{R} \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \left(z_{k} \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \sum_{k=1}^{n} b_{k} > a > 0| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| BetaFunction | B(a,b) | Beta function |
| Integral | ∫abf(x)dx | Integral |
| Pow | ab | Power |
| Product | ∏nf(n) | Product |
| Infinity | ∞ | Positive infinity |
| Sum | ∑nf(n) | Sum |
| RR | R | Real numbers |
| ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
| Range | {a,a+1,…,b} | Integers between given endpoints |
| CC | C | Complex numbers |
| OpenClosedInterval | (a,b] | Open-closed interval |
Entry(ID("a1f7ea"),
Formula(Equal(CarlsonHypergeometricR(Neg(a), List(b_(k), For(k, 1, n)), List(z_(k), For(k, 1, n))), Where(Mul(Div(1, BetaFunction(a, c)), Integral(Mul(Pow(t, Sub(c, 1)), Product(Pow(Add(t, z_(k)), Neg(b_(k))), For(k, 1, n))), For(t, 0, Infinity))), Def(c, Add(Neg(a), Sum(b_(j), For(j, 1, n))))))),
Variables(a, b_, z_, n),
Assumptions(And(Element(a, RR), Element(n, ZZGreaterEqual(1)), All(Element(b_(k), RR), ForElement(k, Range(1, n))), All(Element(z_(k), SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), ForElement(k, Range(1, n))), Greater(Sum(b_(k), For(k, 1, n)), a, 0))))R_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = \frac{1}{\mathrm{B}\!\left(a, c\right)} \int_{0}^{\infty} {t}^{a - 1} \prod_{k=1}^{n} {\left(1 + t z_{k}\right)}^{-b_{k}} \, dt\; \text{ where } c = -a + \sum_{j=1}^{n} b_{j}
a \in \mathbb{R} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \left(b_{k} \in \mathbb{R} \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \left(z_{k} \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \sum_{k=1}^{n} b_{k} > a > 0| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonHypergeometricR | R−a(b,z) | Carlson multivariate hypergeometric function |
| BetaFunction | B(a,b) | Beta function |
| Integral | ∫abf(x)dx | Integral |
| Pow | ab | Power |
| Product | ∏nf(n) | Product |
| Infinity | ∞ | Positive infinity |
| Sum | ∑nf(n) | Sum |
| RR | R | Real numbers |
| ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
| Range | {a,a+1,…,b} | Integers between given endpoints |
| CC | C | Complex numbers |
| OpenClosedInterval | (a,b] | Open-closed interval |
Entry(ID("c5d388"),
Formula(Equal(CarlsonHypergeometricR(Neg(a), List(b_(k), For(k, 1, n)), List(z_(k), For(k, 1, n))), Where(Mul(Div(1, BetaFunction(a, c)), Integral(Mul(Pow(t, Sub(a, 1)), Product(Pow(Add(1, Mul(t, z_(k))), Neg(b_(k))), For(k, 1, n))), For(t, 0, Infinity))), Def(c, Add(Neg(a), Sum(b_(j), For(j, 1, n))))))),
Variables(a, b_, z_, n),
Assumptions(And(Element(a, RR), Element(n, ZZGreaterEqual(1)), All(Element(b_(k), RR), ForElement(k, Range(1, n))), All(Element(z_(k), SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), ForElement(k, Range(1, n))), Greater(Sum(b_(k), For(k, 1, n)), a, 0))))R_C\!\left(1, 1 + y\right) = \,{}_2F_1\!\left(1, \frac{1}{2}, \frac{3}{2}, -y\right)
y \in \mathbb{C}| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRC | RC(x,y) | Degenerate Carlson symmetric elliptic integral of the first kind |
| Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
| CC | C | Complex numbers |
Entry(ID("157ebb"),
Formula(Equal(CarlsonRC(1, Add(1, y)), Hypergeometric2F1(1, Div(1, 2), Div(3, 2), Neg(y)))),
Variables(y),
Assumptions(Element(y, CC)))Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.
2021-03-15 19:12:00.328586 UTC