The set of prime numbers.
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
PP | P | Prime numbers |
Source code for this entry:
Entry(ID("38f111"), SymbolDefinition(PP, PP, "Prime numbers"), Description("The set of prime numbers."))
Table of contents: Definitions - Connection formulas - Tables - Bounds and inequalities
Fungrim symbol | Notation | Short description |
---|---|---|
PP | P | Prime numbers |
Entry(ID("38f111"), SymbolDefinition(PP, PP, "Prime numbers"), Description("The set of prime numbers."))
|
Fungrim symbol | Notation | Short description |
---|---|---|
PrimeNumber | pn | nth prime number |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
PP | P | Prime numbers |
Entry(ID("0b643d"), SymbolDefinition(PrimeNumber, PrimeNumber(n), "nth prime number"), Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(Tuple(Element(n, ZZGreaterEqual(1)), Element(PrimeNumber(n), PP)))))
|
Fungrim symbol | Notation | Short description |
---|---|---|
PrimePi | π(x) | Prime counting function |
RR | R | Real numbers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Infinity | ∞ | Positive infinity |
Entry(ID("6c22c8"), SymbolDefinition(PrimePi, PrimePi(x), "Prime counting function"), Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(Tuple(Element(x, RR), Element(PrimePi(x), ZZGreaterEqual(0))), Tuple(Element(x, Set(Infinity)), Element(PrimePi(x), Set(Infinity))))))
Fungrim symbol | Notation | Short description |
---|---|---|
RiemannHypothesis | RH | Riemann hypothesis |
Entry(ID("c03de4"), SymbolDefinition(RiemannHypothesis, RiemannHypothesis, "Riemann hypothesis"), Description("Represents the truth value of the Riemann hypothesis, defined in ", EntryReference("49704a"), "."), Description("Semantically, ", Element(RiemannHypothesis, Set(True_, False_)), "."), Description("This symbol can be used in an assumption to express that a formula is valid conditionally on the truth of the Riemann hypothesis."))
\mathbb{P} = \left\{ p_{n} : n \in \mathbb{Z}_{\ge 1} \right\}
Fungrim symbol | Notation | Short description |
---|---|---|
PP | P | Prime numbers |
PrimeNumber | pn | nth prime number |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("3fc797"), Formula(Equal(PP, Set(PrimeNumber(n), ForElement(n, ZZGreaterEqual(1))))))
\pi(x) = \# \left\{ p : p \in \mathbb{P} \,\mathbin{\operatorname{and}}\, p \le x \right\} x \in \mathbb{R}
Fungrim symbol | Notation | Short description |
---|---|---|
PrimePi | π(x) | Prime counting function |
Cardinality | #S | Set cardinality |
PP | P | Prime numbers |
RR | R | Real numbers |
Entry(ID("04427b"), Formula(Equal(PrimePi(x), Cardinality(Set(p, ForElement(p, PP), LessEqual(p, x))))), Variables(x), Assumptions(Element(x, RR)))
p_{n} = \text{A000040}\!\left(n\right) n \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
PrimeNumber | pn | nth prime number |
SloaneA | A00000X(n) | Sequence X in Sloane's OEIS |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("9d0839"), Formula(Equal(PrimeNumber(n), SloaneA("A000040", n))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(1))))
\pi(n) = \text{A000720}\!\left(n\right) n \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
PrimePi | π(x) | Prime counting function |
SloaneA | A00000X(n) | Sequence X in Sloane's OEIS |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("4fa169"), Formula(Equal(PrimePi(n), SloaneA("A000720", n))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))
|
|
|
|
Fungrim symbol | Notation | Short description |
---|---|---|
PrimeNumber | pn | nth prime number |
Entry(ID("a3035f"), Description("Table of", PrimeNumber(n), "for", LessEqual(1, n, 200)), Table(Var(n), TableValueHeadings(n, PrimeNumber(n)), TableSplit(4), List(Tuple(1, 2), Tuple(2, 3), Tuple(3, 5), Tuple(4, 7), Tuple(5, 11), Tuple(6, 13), Tuple(7, 17), Tuple(8, 19), Tuple(9, 23), Tuple(10, 29), Tuple(11, 31), Tuple(12, 37), Tuple(13, 41), Tuple(14, 43), Tuple(15, 47), Tuple(16, 53), Tuple(17, 59), Tuple(18, 61), Tuple(19, 67), Tuple(20, 71), Tuple(21, 73), Tuple(22, 79), Tuple(23, 83), Tuple(24, 89), Tuple(25, 97), Tuple(26, 101), Tuple(27, 103), Tuple(28, 107), Tuple(29, 109), Tuple(30, 113), Tuple(31, 127), Tuple(32, 131), Tuple(33, 137), Tuple(34, 139), Tuple(35, 149), Tuple(36, 151), Tuple(37, 157), Tuple(38, 163), Tuple(39, 167), Tuple(40, 173), Tuple(41, 179), Tuple(42, 181), Tuple(43, 191), Tuple(44, 193), Tuple(45, 197), Tuple(46, 199), Tuple(47, 211), Tuple(48, 223), Tuple(49, 227), Tuple(50, 229), Tuple(51, 233), Tuple(52, 239), Tuple(53, 241), Tuple(54, 251), Tuple(55, 257), Tuple(56, 263), Tuple(57, 269), Tuple(58, 271), Tuple(59, 277), Tuple(60, 281), Tuple(61, 283), Tuple(62, 293), Tuple(63, 307), Tuple(64, 311), Tuple(65, 313), Tuple(66, 317), Tuple(67, 331), Tuple(68, 337), Tuple(69, 347), Tuple(70, 349), Tuple(71, 353), Tuple(72, 359), Tuple(73, 367), Tuple(74, 373), Tuple(75, 379), Tuple(76, 383), Tuple(77, 389), Tuple(78, 397), Tuple(79, 401), Tuple(80, 409), Tuple(81, 419), Tuple(82, 421), Tuple(83, 431), Tuple(84, 433), Tuple(85, 439), Tuple(86, 443), Tuple(87, 449), Tuple(88, 457), Tuple(89, 461), Tuple(90, 463), Tuple(91, 467), Tuple(92, 479), Tuple(93, 487), Tuple(94, 491), Tuple(95, 499), Tuple(96, 503), Tuple(97, 509), Tuple(98, 521), Tuple(99, 523), Tuple(100, 541), Tuple(101, 547), Tuple(102, 557), Tuple(103, 563), Tuple(104, 569), Tuple(105, 571), Tuple(106, 577), Tuple(107, 587), Tuple(108, 593), Tuple(109, 599), Tuple(110, 601), Tuple(111, 607), Tuple(112, 613), Tuple(113, 617), Tuple(114, 619), Tuple(115, 631), Tuple(116, 641), Tuple(117, 643), Tuple(118, 647), Tuple(119, 653), Tuple(120, 659), Tuple(121, 661), Tuple(122, 673), Tuple(123, 677), Tuple(124, 683), Tuple(125, 691), Tuple(126, 701), Tuple(127, 709), Tuple(128, 719), Tuple(129, 727), Tuple(130, 733), Tuple(131, 739), Tuple(132, 743), Tuple(133, 751), Tuple(134, 757), Tuple(135, 761), Tuple(136, 769), Tuple(137, 773), Tuple(138, 787), Tuple(139, 797), Tuple(140, 809), Tuple(141, 811), Tuple(142, 821), Tuple(143, 823), Tuple(144, 827), Tuple(145, 829), Tuple(146, 839), Tuple(147, 853), Tuple(148, 857), Tuple(149, 859), Tuple(150, 863), Tuple(151, 877), Tuple(152, 881), Tuple(153, 883), Tuple(154, 887), Tuple(155, 907), Tuple(156, 911), Tuple(157, 919), Tuple(158, 929), Tuple(159, 937), Tuple(160, 941), Tuple(161, 947), Tuple(162, 953), Tuple(163, 967), Tuple(164, 971), Tuple(165, 977), Tuple(166, 983), Tuple(167, 991), Tuple(168, 997), Tuple(169, 1009), Tuple(170, 1013), Tuple(171, 1019), Tuple(172, 1021), Tuple(173, 1031), Tuple(174, 1033), Tuple(175, 1039), Tuple(176, 1049), Tuple(177, 1051), Tuple(178, 1061), Tuple(179, 1063), Tuple(180, 1069), Tuple(181, 1087), Tuple(182, 1091), Tuple(183, 1093), Tuple(184, 1097), Tuple(185, 1103), Tuple(186, 1109), Tuple(187, 1117), Tuple(188, 1123), Tuple(189, 1129), Tuple(190, 1151), Tuple(191, 1153), Tuple(192, 1163), Tuple(193, 1171), Tuple(194, 1181), Tuple(195, 1187), Tuple(196, 1193), Tuple(197, 1201), Tuple(198, 1213), Tuple(199, 1217), Tuple(200, 1223))))
|
|
Fungrim symbol | Notation | Short description |
---|---|---|
PrimeNumber | pn | nth prime number |
Pow | ab | Power |
Entry(ID("1e142c"), Description("Table of", PrimeNumber(Pow(10, n)), "for", LessEqual(0, n, 24)), Table(Var(n), TableValueHeadings(n, PrimeNumber(Pow(10, n))), TableSplit(2), List(Tuple(0, 2), Tuple(1, 29), Tuple(2, 541), Tuple(3, 7919), Tuple(4, 104729), Tuple(5, 1299709), Tuple(6, 15485863), Tuple(7, 179424673), Tuple(8, 2038074743), Tuple(9, 22801763489), Tuple(10, 252097800623), Tuple(11, 2760727302517), Tuple(12, 29996224275833), Tuple(13, 323780508946331), Tuple(14, 3475385758524527), Tuple(15, 37124508045065437), Tuple(16, 394906913903735329), Tuple(17, 4185296581467695669), Tuple(18, 44211790234832169331), Tuple(19, 465675465116607065549), Tuple(20, 4892055594575155744537), Tuple(21, 51271091498016403471853), Tuple(22, 536193870744162118627429), Tuple(23, 5596564467986980643073683), Tuple(24, 58310039994836584070534263))))
|
|
Fungrim symbol | Notation | Short description |
---|---|---|
PrimePi | π(x) | Prime counting function |
Pow | ab | Power |
Entry(ID("5404ce"), Description("Table of", PrimePi(Pow(10, n)), "for", LessEqual(0, n, 27)), Table(Var(n), TableValueHeadings(n, PrimePi(Pow(10, n))), TableSplit(2), List(Tuple(0, 0), Tuple(1, 4), Tuple(2, 25), Tuple(3, 168), Tuple(4, 1229), Tuple(5, 9592), Tuple(6, 78498), Tuple(7, 664579), Tuple(8, 5761455), Tuple(9, 50847534), Tuple(10, 455052511), Tuple(11, 4118054813), Tuple(12, 37607912018), Tuple(13, 346065536839), Tuple(14, 3204941750802), Tuple(15, 29844570422669), Tuple(16, 279238341033925), Tuple(17, 2623557157654233), Tuple(18, 24739954287740860), Tuple(19, 234057667276344607), Tuple(20, 2220819602560918840), Tuple(21, 21127269486018731928), Tuple(22, 201467286689315906290), Tuple(23, 1925320391606803968923), Tuple(24, 18435599767349200867866), Tuple(25, 176846309399143769411680), Tuple(26, 1699246750872437141327603), Tuple(27, 16352460426841680446427399))))
p_{n + 1} < 2 p_{n} n \in \mathbb{Z}_{\ge 1}
Fungrim symbol | Notation | Short description |
---|---|---|
PrimeNumber | pn | nth prime number |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("d1ec2d"), Formula(Less(PrimeNumber(Add(n, 1)), Mul(2, PrimeNumber(n)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(1))))
\pi\!\left(2 x\right) - \pi(x) \ge 1 x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x \ge 1
Fungrim symbol | Notation | Short description |
---|---|---|
PrimePi | π(x) | Prime counting function |
RR | R | Real numbers |
Entry(ID("69fd4b"), Formula(GreaterEqual(Sub(PrimePi(Mul(2, x)), PrimePi(x)), 1)), Variables(x), Assumptions(And(Element(x, RR), GreaterEqual(x, 1))))
p_{n} < n \log\!\left(n \log(n)\right) n \in \mathbb{Z}_{\ge 6}
Fungrim symbol | Notation | Short description |
---|---|---|
PrimeNumber | pn | nth prime number |
Log | log(z) | Natural logarithm |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("6f3cf7"), Formula(Less(PrimeNumber(n), Mul(n, Log(Mul(n, Log(n)))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(6))))
p_{n} > n \left(\log\!\left(n \log(n)\right) - 1\right) n \in \mathbb{Z}_{\ge 2}
Fungrim symbol | Notation | Short description |
---|---|---|
PrimeNumber | pn | nth prime number |
Log | log(z) | Natural logarithm |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("8c52de"), Formula(Greater(PrimeNumber(n), Mul(n, Sub(Log(Mul(n, Log(n))), 1)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(2))))
p_{n} < n \left(\log(n) + \log\!\left(\log(n)\right) - 1 + \frac{\log\!\left(\log(n)\right) - 2}{\log(n)} - \frac{\log^{2}\!\left(\log(n)\right) - 6 \log\!\left(\log(n)\right) + 10.667}{2 \log^{2}\!\left(n\right)}\right) n \in \mathbb{Z}_{\ge 46254381}
Fungrim symbol | Notation | Short description |
---|---|---|
PrimeNumber | pn | nth prime number |
Log | log(z) | Natural logarithm |
Pow | ab | Power |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("bfa464"), Formula(Less(PrimeNumber(n), Mul(n, Sub(Add(Sub(Add(Log(n), Log(Log(n))), 1), Div(Sub(Log(Log(n)), 2), Log(n))), Div(Add(Sub(Pow(Log(Log(n)), 2), Mul(6, Log(Log(n)))), Decimal("10.667")), Mul(2, Pow(Log(n), 2))))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(46254381))), References("https://arxiv.org/abs/1706.03651"))
p_{n} > n \left(\log(n) + \log\!\left(\log(n)\right) - 1 + \frac{\log\!\left(\log(n)\right) - 2}{\log(n)} - \frac{\log^{2}\!\left(\log(n)\right) - 6 \log\!\left(\log(n)\right) + 11.508}{2 \log^{2}\!\left(n\right)}\right) n \in \mathbb{Z}_{\ge 2}
Fungrim symbol | Notation | Short description |
---|---|---|
PrimeNumber | pn | nth prime number |
Log | log(z) | Natural logarithm |
Pow | ab | Power |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("1e3388"), Formula(Greater(PrimeNumber(n), Mul(n, Sub(Add(Sub(Add(Log(n), Log(Log(n))), 1), Div(Sub(Log(Log(n)), 2), Log(n))), Div(Add(Sub(Pow(Log(Log(n)), 2), Mul(6, Log(Log(n)))), Decimal("11.508")), Mul(2, Pow(Log(n), 2))))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(2))), References("https://arxiv.org/abs/1706.03651"))
\pi(x) < \frac{1.25506 x}{\log(x)} x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x > 1
Fungrim symbol | Notation | Short description |
---|---|---|
PrimePi | π(x) | Prime counting function |
Log | log(z) | Natural logarithm |
RR | R | Real numbers |
Entry(ID("5258c0"), Formula(Less(PrimePi(x), Div(Mul(Decimal("1.25506"), x), Log(x)))), Variables(x), Assumptions(And(Element(x, RR), Greater(x, 1))))
\left|\pi(x) - \operatorname{li}(x)\right| < \frac{\sqrt{x} \log(x)}{8 \pi} x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x \ge 2657 \;\mathbin{\operatorname{and}}\; \operatorname{RH}
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | ∣z∣ | Absolute value |
PrimePi | π(x) | Prime counting function |
LogIntegral | li(z) | Logarithmic integral |
Sqrt | z | Principal square root |
Log | log(z) | Natural logarithm |
Pi | π | The constant pi (3.14...) |
RR | R | Real numbers |
RiemannHypothesis | RH | Riemann hypothesis |
Entry(ID("375afe"), Formula(Less(Abs(Sub(PrimePi(x), LogIntegral(x))), Div(Mul(Sqrt(x), Log(x)), Mul(8, Pi)))), Variables(x), Assumptions(And(Element(x, RR), GreaterEqual(x, 2657), RiemannHypothesis)), References("L. Schoenfeld (1976). Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II. Mathematics of Computation. 30 (134): 337-360. DOI: 10.2307/2005976"))
\pi(x) > \frac{x}{\log(x)} x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x \ge 17
Fungrim symbol | Notation | Short description |
---|---|---|
PrimePi | π(x) | Prime counting function |
Log | log(z) | Natural logarithm |
RR | R | Real numbers |
Entry(ID("d898b9"), Formula(Greater(PrimePi(x), Div(x, Log(x)))), Variables(x), Assumptions(And(Element(x, RR), GreaterEqual(x, 17))))
Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.
2021-03-15 19:12:00.328586 UTC