Fungrim home page

Powers

Table of contents: Integer exponents - Elementary functions - Complex parts - Expansion

ef9f8a
Symbol: Pow ab{a}^{b} Power

Integer exponents

d316bc
00=1{0}^{0} = 1
310f36
z0=1{z}^{0} = 1
a249f6
z1=z{z}^{1} = z
6c2b31
zn+1=znz{z}^{n + 1} = {z}^{n} z
c53d94
z1=1z{z}^{-1} = \frac{1}{z}

Elementary functions

4d6416
ab=eblog(a){a}^{b} = {e}^{b \log(a)}
634687
z1/2=z{z}^{1 / 2} = \sqrt{z}
2e0d99
z1/2=1z{z}^{-1 / 2} = \frac{1}{\sqrt{z}}

Complex parts

0aac97
(a+bi)c+di=Mcedθ(cos ⁣(cθ+dlog(M))+isin ⁣(cθ+dlog(M)))   where M=a+bi,  θ=arg ⁣(a+bi){\left(a + b i\right)}^{c + d i} = {M}^{c} {e}^{-d \theta} \left(\cos\!\left(c \theta + d \log(M)\right) + i \sin\!\left(c \theta + d \log(M)\right)\right)\; \text{ where } M = \left|a + b i\right|,\;\theta = \arg\!\left(a + b i\right)
bc4d0a
(a+bi)c+di=Mcedθ   where M=a+bi,  θ=arg ⁣(a+bi)\left|{\left(a + b i\right)}^{c + d i}\right| = {M}^{c} {e}^{-d \theta}\; \text{ where } M = \left|a + b i\right|,\;\theta = \arg\!\left(a + b i\right)
caf8cf
Re ⁣((a+bi)c+di)=Mcedθcos ⁣(cθ+dlog(M))   where M=a+bi,  θ=arg ⁣(a+bi)\operatorname{Re}\!\left({\left(a + b i\right)}^{c + d i}\right) = {M}^{c} {e}^{-d \theta} \cos\!\left(c \theta + d \log(M)\right)\; \text{ where } M = \left|a + b i\right|,\;\theta = \arg\!\left(a + b i\right)
18873d
Im ⁣((a+bi)c+di)=Mcedθsin ⁣(cθ+dlog(M))   where M=a+bi,  θ=arg ⁣(a+bi)\operatorname{Im}\!\left({\left(a + b i\right)}^{c + d i}\right) = {M}^{c} {e}^{-d \theta} \sin\!\left(c \theta + d \log(M)\right)\; \text{ where } M = \left|a + b i\right|,\;\theta = \arg\!\left(a + b i\right)

Expansion

2090c3
(xy)a=xayaexp ⁣(2πiaπarg(x)arg(y)2π){\left(x y\right)}^{a} = {x}^{a} {y}^{a} \exp\!\left(2 \pi i a \left\lfloor \frac{\pi - \arg(x) - \arg(y)}{2 \pi} \right\rfloor\right)

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC