Symbol: ZZ — Z
— Integers
Represents the set of integers.
Definitions:
Fungrim symbol | Notation | Short description |
---|
ZZ | Z
| Integers |
Source code for this entry:
Entry(ID("298e9e"),
SymbolDefinition(ZZ, ZZ, "Integers"),
Description("Represents the set of integers."))
Symbol: QQ — Q
— Rational numbers
Represents the set of rational numbers.
Definitions:
Fungrim symbol | Notation | Short description |
---|
QQ | Q
| Rational numbers |
Source code for this entry:
Entry(ID("7be5dc"),
SymbolDefinition(QQ, QQ, "Rational numbers"),
Description("Represents the set of rational numbers."))
Symbol: RR — R
— Real numbers
Represents the set of real numbers.
Definitions:
Fungrim symbol | Notation | Short description |
---|
RR | R
| Real numbers |
Source code for this entry:
Entry(ID("bfe358"),
SymbolDefinition(RR, RR, "Real numbers"),
Description("Represents the set of real numbers."))
Symbol: CC — C
— Complex numbers
Represents the set of complex numbers.
Definitions:
Fungrim symbol | Notation | Short description |
---|
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("0deea6"),
SymbolDefinition(CC, CC, "Complex numbers"),
Description("Represents the set of complex numbers."))
Symbol: ConstI — i
— Imaginary unit
The imaginary unit.
Definitions:
Fungrim symbol | Notation | Short description |
---|
ConstI | i
| Imaginary unit |
Source code for this entry:
Entry(ID("851121"),
SymbolDefinition(ConstI, ConstI, "Imaginary unit"),
Description("The imaginary unit."))
Q={qp:p∈Zandq∈Z∖{0}}
TeX:
\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, q \in \mathbb{Z} \setminus \left\{0\right\} \right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
QQ | Q
| Rational numbers |
SetBuilder | {f(x):P(x)}
| Set comprehension |
ZZ | Z
| Integers |
Source code for this entry:
Entry(ID("c01d22"),
Formula(Equal(QQ, SetBuilder(Div(p, q), Tuple(p, q), And(Element(p, ZZ), Element(q, SetMinus(ZZ, Set(0))))))))
TeX:
{i}^{2} = -1
Definitions:
Fungrim symbol | Notation | Short description |
---|
Pow | ab
| Power |
ConstI | i
| Imaginary unit |
Source code for this entry:
Entry(ID("3e1c20"),
Formula(Equal(Pow(ConstI, 2), -1)))
C={x+yi:x∈Randy∈R}
TeX:
\mathbb{C} = \left\{ x + y i : x \in \mathbb{R} \,\mathbin{\operatorname{and}}\, y \in \mathbb{R} \right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|
CC | C
| Complex numbers |
SetBuilder | {f(x):P(x)}
| Set comprehension |
ConstI | i
| Imaginary unit |
RR | R
| Real numbers |
Source code for this entry:
Entry(ID("77ef0c"),
Formula(Equal(CC, SetBuilder(Add(x, Mul(y, ConstI)), Tuple(x, y), And(Element(x, RR), Element(y, RR))))))
Z⊂Q⊂R⊂C
TeX:
\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|
ZZ | Z
| Integers |
QQ | Q
| Rational numbers |
RR | R
| Real numbers |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("4fd123"),
Formula(Subset(ZZ, QQ, RR, CC)))
Represents the set of algebraic numbers.
Definitions:
Fungrim symbol | Notation | Short description |
---|
AlgebraicNumbers | Q
| Algebraic numbers |
Source code for this entry:
Entry(ID("be9c83"),
SymbolDefinition(AlgebraicNumbers, AlgebraicNumbers, "Algebraic numbers"),
Description("Represents the set of algebraic numbers."))
Z⊂Q⊂Q⊂C
TeX:
\mathbb{Z} \subset \mathbb{Q} \subset \overline{\mathbb{Q}} \subset \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|
ZZ | Z
| Integers |
QQ | Q
| Rational numbers |
AlgebraicNumbers | Q
| Algebraic numbers |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("e5a04c"),
Formula(Subset(ZZ, QQ, AlgebraicNumbers, CC)))
Symbol: Infinity — ∞
— Positive infinity
This formal symbol represents a quantity larger than any real number. We define
+∞=∞.
Multiplication of
∞
by a nonzero complex number represents an infinite limit with the given direction in the complex plane. In particular,
−∞,
i∞
and
−i∞
are frequently used.
The set
R∪{∞,−∞}
is known as the extended real line.
Definitions:
Fungrim symbol | Notation | Short description |
---|
Infinity | ∞
| Positive infinity |
ConstI | i
| Imaginary unit |
RR | R
| Real numbers |
Source code for this entry:
Entry(ID("b738b1"),
SymbolDefinition(Infinity, Infinity, "Positive infinity"),
Description("This formal symbol represents a quantity larger than any real number. We define", Equal(Pos(Infinity), Infinity), "."),
Description("Multiplication of", Infinity, "by a nonzero complex number represents an infinite limit with the given direction in the complex plane.", "In particular,", Neg(Infinity), ",", Mul(ConstI, Infinity), "and", Mul(Neg(ConstI), Infinity), "are frequently used."),
Description("The set", Union(RR, Set(Infinity, Neg(Infinity))), "is known as the extended real line."))
This formal symbol represents a quantity with infinite magnitude and undefined sign.
It is typically used to represent the value of meromorphic functions at poles.
The set
C∪{∞~}
represents the complex Riemann sphere.
Definitions:
Fungrim symbol | Notation | Short description |
---|
UnsignedInfinity | ∞~
| Unsigned infinity |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("486ab2"),
SymbolDefinition(UnsignedInfinity, UnsignedInfinity, "Unsigned infinity"),
Description("This formal symbol represents a quantity with infinite magnitude and undefined sign."),
Description("It is typically used to represent the value of meromorphic functions at poles."),
Description("The set", Union(CC, Set(UnsignedInfinity)), "represents the complex Riemann sphere."))
Symbol: ZZGreaterEqual — Z≥n
— Integers greater than or equal to n
Definitions:
Fungrim symbol | Notation | Short description |
---|
ZZGreaterEqual | Z≥n
| Integers greater than or equal to n |
Source code for this entry:
Entry(ID("03fbae"),
SymbolDefinition(ZZGreaterEqual, ZZGreaterEqual(n), "Integers greater than or equal to n"))
Symbol: ZZLessEqual — Z≤n
— Integers less than or equal to n
This symbol may be rendered differently when
n
is a concrete value, for example:
{−3,−4,…}
Definitions:
Fungrim symbol | Notation | Short description |
---|
ZZLessEqual | Z≤n
| Integers less than or equal to n |
Source code for this entry:
Entry(ID("2a52af"),
SymbolDefinition(ZZLessEqual, ZZLessEqual(n), "Integers less than or equal to n"),
Description("This symbol may be rendered differently when", n, "is a concrete value, for example: ", ZZLessEqual(-3)))
Symbol: ZZBetween — {a,a+1,…b}
— Integers between a and b inclusive
Definitions:
Fungrim symbol | Notation | Short description |
---|
ZZBetween | {a,a+1,…b}
| Integers between a and b inclusive |
Source code for this entry:
Entry(ID("00b82b"),
SymbolDefinition(ZZBetween, ZZBetween(a, b), "Integers between a and b inclusive"))
Symbol: ClosedInterval — [a,b]
— Closed interval
Definitions:
Fungrim symbol | Notation | Short description |
---|
ClosedInterval | [a,b]
| Closed interval |
Source code for this entry:
Entry(ID("12d5ab"),
SymbolDefinition(ClosedInterval, ClosedInterval(a, b), "Closed interval"))
Symbol: OpenInterval — (a,b)
— Open interval
Definitions:
Fungrim symbol | Notation | Short description |
---|
OpenInterval | (a,b)
| Open interval |
Source code for this entry:
Entry(ID("3fe68f"),
SymbolDefinition(OpenInterval, OpenInterval(a, b), "Open interval"))
Definitions:
Fungrim symbol | Notation | Short description |
---|
ClosedOpenInterval | [a,b)
| Closed-open interval |
Source code for this entry:
Entry(ID("b2162a"),
SymbolDefinition(ClosedOpenInterval, ClosedOpenInterval(a, b), "Closed-open interval"))
Definitions:
Fungrim symbol | Notation | Short description |
---|
OpenClosedInterval | (a,b]
| Open-closed interval |
Source code for this entry:
Entry(ID("ed302a"),
SymbolDefinition(OpenClosedInterval, OpenClosedInterval(a, b), "Open-closed interval"))