Fungrim home page

Keiper-Li coefficients

Table of contents: Definitions - Representations - Specific values - Asymptotics - Riemann hypothesis (Li's criterion)

Definitions

432bee
Symbol: KeiperLiLambda λn\lambda_{n} Keiper-Li coefficient

Representations

fcab61
λn=1n![dndsnlog ⁣(2ξ ⁣(ss1))]s=0\lambda_{n} = \frac{1}{n !} \left[ \frac{d^{n}}{{d s}^{n}} \log\!\left(2 \xi\!\left(\frac{s}{s - 1}\right)\right) \right]_{s = 0}
cce75b
λn=1nkZk0(1(ρkρk1)n)\lambda_{n} = \frac{1}{n} \sum_{\textstyle{k \in \mathbb{Z} \atop k \ne 0}} \left(1 - {\left(\frac{\rho_{k}}{\rho_{k} - 1}\right)}^{n}\right)

Specific values

081205
λ0=0\lambda_{0} = 0
d8d820
λ1=γ2+1log ⁣(4π)2\lambda_{1} = \frac{\gamma}{2} + 1 - \frac{\log\!\left(4 \pi\right)}{2}
faf448
Table of λn\lambda_{n} to 50 digits for 0n300 \le n \le 30
706f66
Table of λ10n\lambda_{{10}^{n}} to 50 digits for 0n50 \le n \le 5

Asymptotics

64bd32
(RH)        (λnlog(n)2log ⁣(2π)+1γ2,  n)\left(\operatorname{RH}\right) \;\implies\; \left(\lambda_{n} \sim \frac{\log(n)}{2} - \frac{\log\!\left(2 \pi\right) + 1 - \gamma}{2}, \; n \to \infty\right)

Riemann hypothesis (Li's criterion)

e68f82
(RH)    (λn>0   for all nZ1)\left(\operatorname{RH}\right) \iff \left(\lambda_{n} > 0 \;\text{ for all } n \in \mathbb{Z}_{\ge 1}\right)
a5d65f
(RH)    (n=1λna(n)2<   where a(n)=log(n)2log ⁣(2π)+1γ2)\left(\operatorname{RH}\right) \iff \left(\sum_{n=1}^{\infty} {\left|\lambda_{n} - a(n)\right|}^{2} < \infty\; \text{ where } a(n) = \frac{\log(n)}{2} - \frac{\log\!\left(2 \pi\right) + 1 - \gamma}{2}\right)
8f8fb7
(Re ⁣(ρn)=12   for all nZ1 with Im ⁣(ρn)<T)        (λn0   for all nZ0 with nT2)\left(\operatorname{Re}\!\left(\rho_{n}\right) = \frac{1}{2} \;\text{ for all } n \in \mathbb{Z}_{\ge 1} \text{ with } \operatorname{Im}\!\left(\rho_{n}\right) < T\right) \;\implies\; \left(\lambda_{n} \ge 0 \;\text{ for all } n \in \mathbb{Z}_{\ge 0} \text{ with } n \le {T}^{2}\right)

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC