Table of contents: Hypergeometric series - Differential equations - Specific values - Symmetries - Linear fractional transformations - Bounds and inequalities
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
Entry(ID("e03016"), SymbolDefinition(Hypergeometric2F1, Hypergeometric2F1(a, b, c, z), "Gauss hypergeometric function"))
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F1Regularized | 2F1(a,b,c,z) | Regularized Gauss hypergeometric function |
Entry(ID("c43abd"), SymbolDefinition(Hypergeometric2F1Regularized, Hypergeometric2F1Regularized(a, b, c, z), "Regularized Gauss hypergeometric function"))
\,{}_2F_1\!\left(a, b, c, z\right) = \sum_{k=0}^{\infty} \frac{\left(a\right)_{k} \left(b\right)_{k}}{\left(c\right)_{k}} \frac{{z}^{k}}{k !} a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(\left|z\right| < 1 \;\mathbin{\operatorname{or}}\; a \in \{0, -1, \ldots\} \;\mathbin{\operatorname{or}}\; b \in \{0, -1, \ldots\}\right)
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
Sum | ∑nf(n) | Sum |
RisingFactorial | (z)k | Rising factorial |
Pow | ab | Power |
Factorial | n! | Factorial |
Infinity | ∞ | Positive infinity |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Abs | ∣z∣ | Absolute value |
Entry(ID("ad8db2"), Formula(Equal(Hypergeometric2F1(a, b, c, z), Sum(Mul(Div(Mul(RisingFactorial(a, k), RisingFactorial(b, k)), RisingFactorial(c, k)), Div(Pow(z, k), Factorial(k))), For(k, 0, Infinity)))), Variables(a, b, c, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, SetMinus(CC, ZZLessEqual(0))), Element(z, CC), Or(Less(Abs(z), 1), Element(a, ZZLessEqual(0)), Element(b, ZZLessEqual(0))))))
\,{}_2{\textbf F}_1\!\left(a, b, c, z\right) = \sum_{k=0}^{\infty} \frac{\left(a\right)_{k} \left(b\right)_{k}}{\Gamma\!\left(c + k\right)} \frac{{z}^{k}}{k !} a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(\left|z\right| < 1 \;\mathbin{\operatorname{or}}\; a \in \{0, -1, \ldots\} \;\mathbin{\operatorname{or}}\; b \in \{0, -1, \ldots\} \;\mathbin{\operatorname{or}}\; c \in \{0, -1, \ldots\}\right)
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F1Regularized | 2F1(a,b,c,z) | Regularized Gauss hypergeometric function |
Sum | ∑nf(n) | Sum |
RisingFactorial | (z)k | Rising factorial |
Gamma | Γ(z) | Gamma function |
Pow | ab | Power |
Factorial | n! | Factorial |
Infinity | ∞ | Positive infinity |
CC | C | Complex numbers |
Abs | ∣z∣ | Absolute value |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("306ef7"), Formula(Equal(Hypergeometric2F1Regularized(a, b, c, z), Sum(Mul(Div(Mul(RisingFactorial(a, k), RisingFactorial(b, k)), Gamma(Add(c, k))), Div(Pow(z, k), Factorial(k))), For(k, 0, Infinity)))), Variables(a, b, c, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, CC), Element(z, CC), Or(Less(Abs(z), 1), Element(a, ZZLessEqual(0)), Element(b, ZZLessEqual(0)), Element(c, ZZLessEqual(0))))))
\,{}_2{\textbf F}_1\!\left(a, b, c, z\right) = \frac{\,{}_2F_1\!\left(a, b, c, z\right)}{\Gamma(c)} a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F1Regularized | 2F1(a,b,c,z) | Regularized Gauss hypergeometric function |
Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
Gamma | Γ(z) | Gamma function |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("fe6e74"), Formula(Equal(Hypergeometric2F1Regularized(a, b, c, z), Div(Hypergeometric2F1(a, b, c, z), Gamma(c)))), Variables(a, b, c, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, SetMinus(CC, ZZLessEqual(0))), Element(z, CC))))
\,{}_2{\textbf F}_1\!\left(a, b, -n, z\right) = \frac{\left(a\right)_{n + 1} \left(b\right)_{n + 1} {z}^{n + 1}}{\left(n + 1\right)!} \,{}_2F_1\!\left(a + n + 1, b + n + 1, n + 2, z\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{1\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F1Regularized | 2F1(a,b,c,z) | Regularized Gauss hypergeometric function |
RisingFactorial | (z)k | Rising factorial |
Pow | ab | Power |
Factorial | n! | Factorial |
Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
CC | C | Complex numbers |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("65693e"), Formula(Equal(Hypergeometric2F1Regularized(a, b, Neg(n), z), Mul(Div(Mul(Mul(RisingFactorial(a, Add(n, 1)), RisingFactorial(b, Add(n, 1))), Pow(z, Add(n, 1))), Factorial(Add(n, 1))), Hypergeometric2F1(Add(Add(a, n), 1), Add(Add(b, n), 1), Add(n, 2), z)))), Variables(a, b, n, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(n, ZZGreaterEqual(0)), Element(z, SetMinus(CC, Set(1))))))
z \left(1 - z\right) y''(z) + \left(c - \left(a + b + 1\right) z\right) y'(z) - a b y(z) = 0\; \text{ where } y(z) = \,{}_2F_1\!\left(a, b, c, z\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left[1, \infty\right)
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
ClosedOpenInterval | [a,b) | Closed-open interval |
Infinity | ∞ | Positive infinity |
Entry(ID("f1bd89"), Formula(Where(Equal(Sub(Add(Mul(Mul(z, Sub(1, z)), ComplexDerivative(y(z), For(z, z, 2))), Mul(Sub(c, Mul(Add(Add(a, b), 1), z)), ComplexDerivative(y(z), For(z, z, 1)))), Mul(Mul(a, b), y(z))), 0), Equal(y(z), Hypergeometric2F1(a, b, c, z)))), Variables(a, b, c, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, SetMinus(CC, ZZLessEqual(0))), Element(z, SetMinus(CC, ClosedOpenInterval(1, Infinity))))))
\,{}_2F_1\!\left(a, b, c, 0\right) = 1 a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \setminus \{0, -1, \ldots\}
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("18d955"), Formula(Equal(Hypergeometric2F1(a, b, c, 0), 1)), Variables(a, b, c), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, SetMinus(CC, ZZLessEqual(0))))))
\,{}_2F_1\!\left(a, b, c, 1\right) = \frac{\Gamma(c) \Gamma\!\left(c - a - b\right)}{\Gamma\!\left(c - a\right) \Gamma\!\left(c - b\right)} a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; \operatorname{Re}\!\left(c - a - b\right) > 0
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
Gamma | Γ(z) | Gamma function |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Re | Re(z) | Real part |
Entry(ID("659ce8"), Formula(Equal(Hypergeometric2F1(a, b, c, 1), Div(Mul(Gamma(c), Gamma(Sub(Sub(c, a), b))), Mul(Gamma(Sub(c, a)), Gamma(Sub(c, b)))))), Variables(a, b, c), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, SetMinus(CC, ZZLessEqual(0))), Greater(Re(Sub(Sub(c, a), b)), 0))))
\,{}_2F_1\!\left(1, 1, 2, z\right) = -\frac{\log\!\left(1 - z\right)}{z} z \in \mathbb{C} \setminus \left\{0, 1\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
Log | log(z) | Natural logarithm |
CC | C | Complex numbers |
Entry(ID("a85994"), Formula(Equal(Hypergeometric2F1(1, 1, 2, z), Neg(Div(Log(Sub(1, z)), z)))), Variables(z), Assumptions(Element(z, SetMinus(CC, Set(0, 1)))))
\,{}_2F_1\!\left(a, b, b, z\right) = {\left(1 - z\right)}^{-a} a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0, 1\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
Pow | ab | Power |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("20bf69"), Formula(Equal(Hypergeometric2F1(a, b, b, z), Pow(Sub(1, z), Neg(a)))), Variables(a, b, z), Assumptions(And(Element(a, CC), Element(b, SetMinus(CC, ZZLessEqual(0))), Element(z, SetMinus(CC, Set(0, 1))))))
\,{}_2F_1\!\left(a, b, c, z\right) = \,{}_2F_1\!\left(b, a, c, z\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("0e0393"), Formula(Equal(Hypergeometric2F1(a, b, c, z), Hypergeometric2F1(b, a, c, z))), Variables(a, b, c, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, SetMinus(CC, ZZLessEqual(0))), Element(z, CC))))
\,{}_2F_1\!\left(a, b, c, z\right) = \overline{\,{}_2F_1\!\left(\overline{a}, \overline{b}, \overline{c}, \overline{z}\right)} a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left[1, \infty\right)
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
Conjugate | z | Complex conjugate |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
ClosedOpenInterval | [a,b) | Closed-open interval |
Infinity | ∞ | Positive infinity |
Entry(ID("3d6d7e"), Formula(Equal(Hypergeometric2F1(a, b, c, z), Conjugate(Hypergeometric2F1(Conjugate(a), Conjugate(b), Conjugate(c), Conjugate(z))))), Variables(a, b, c, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, SetMinus(CC, ZZLessEqual(0))), Element(z, SetMinus(CC, ClosedOpenInterval(1, Infinity))))))
\,{}_2{\textbf F}_1\!\left(a, b, c, z\right) = {\left(1 - z\right)}^{c - a - b} \,{}_2{\textbf F}_1\!\left(c - a, c - b, c, z\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 1
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F1Regularized | 2F1(a,b,c,z) | Regularized Gauss hypergeometric function |
Pow | ab | Power |
CC | C | Complex numbers |
Entry(ID("651a4a"), Formula(Equal(Hypergeometric2F1Regularized(a, b, c, z), Mul(Pow(Sub(1, z), Sub(Sub(c, a), b)), Hypergeometric2F1Regularized(Sub(c, a), Sub(c, b), c, z)))), Variables(a, b, c, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, CC), Element(z, CC), NotEqual(z, 1))))
\,{}_2{\textbf F}_1\!\left(a, b, c, z\right) = {\left(1 - z\right)}^{-a} \,{}_2{\textbf F}_1\!\left(a, c - b, c, \frac{z}{z - 1}\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \left[1, \infty\right)
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F1Regularized | 2F1(a,b,c,z) | Regularized Gauss hypergeometric function |
Pow | ab | Power |
CC | C | Complex numbers |
ClosedOpenInterval | [a,b) | Closed-open interval |
Infinity | ∞ | Positive infinity |
Entry(ID("b25089"), Formula(Equal(Hypergeometric2F1Regularized(a, b, c, z), Mul(Pow(Sub(1, z), Neg(a)), Hypergeometric2F1Regularized(a, Sub(c, b), c, Div(z, Sub(z, 1)))))), Variables(a, b, c, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, CC), Element(z, CC), NotElement(z, ClosedOpenInterval(1, Infinity)))))
\,{}_2{\textbf F}_1\!\left(a, b, c, z\right) = {\left(1 - z\right)}^{-b} \,{}_2{\textbf F}_1\!\left(c - a, b, c, \frac{z}{z - 1}\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \left[1, \infty\right)
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F1Regularized | 2F1(a,b,c,z) | Regularized Gauss hypergeometric function |
Pow | ab | Power |
CC | C | Complex numbers |
ClosedOpenInterval | [a,b) | Closed-open interval |
Infinity | ∞ | Positive infinity |
Entry(ID("504717"), Formula(Equal(Hypergeometric2F1Regularized(a, b, c, z), Mul(Pow(Sub(1, z), Neg(b)), Hypergeometric2F1Regularized(Sub(c, a), b, c, Div(z, Sub(z, 1)))))), Variables(a, b, c, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, CC), Element(z, CC), NotElement(z, ClosedOpenInterval(1, Infinity)))))
\frac{\sin\!\left(\pi \left(b - a\right)\right)}{\pi} \,{}_2{\textbf F}_1\!\left(a, b, c, z\right) = \frac{{\left(-z\right)}^{-a}}{\Gamma(b) \Gamma\!\left(c - a\right)} \,{}_2{\textbf F}_1\!\left(a, a - c + 1, a - b + 1, \frac{1}{z}\right) - \frac{{\left(-z\right)}^{-b}}{\Gamma(a) \Gamma\!\left(c - b\right)} \,{}_2{\textbf F}_1\!\left(b, b - c + 1, b - a + 1, \frac{1}{z}\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \left[0, \infty\right)
Fungrim symbol | Notation | Short description |
---|---|---|
Sin | sin(z) | Sine |
Pi | π | The constant pi (3.14...) |
Hypergeometric2F1Regularized | 2F1(a,b,c,z) | Regularized Gauss hypergeometric function |
Pow | ab | Power |
Gamma | Γ(z) | Gamma function |
CC | C | Complex numbers |
ClosedOpenInterval | [a,b) | Closed-open interval |
Infinity | ∞ | Positive infinity |
Entry(ID("90ac58"), Formula(Equal(Mul(Div(Sin(Mul(Pi, Sub(b, a))), Pi), Hypergeometric2F1Regularized(a, b, c, z)), Sub(Mul(Div(Pow(Neg(z), Neg(a)), Mul(Gamma(b), Gamma(Sub(c, a)))), Hypergeometric2F1Regularized(a, Add(Sub(a, c), 1), Add(Sub(a, b), 1), Div(1, z))), Mul(Div(Pow(Neg(z), Neg(b)), Mul(Gamma(a), Gamma(Sub(c, b)))), Hypergeometric2F1Regularized(b, Add(Sub(b, c), 1), Add(Sub(b, a), 1), Div(1, z)))))), Variables(a, b, c, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, CC), Element(z, CC), NotElement(z, ClosedOpenInterval(0, Infinity)))))
\frac{\sin\!\left(\pi \left(b - a\right)\right)}{\pi} \,{}_2{\textbf F}_1\!\left(a, b, c, z\right) = \frac{{\left(1 - z\right)}^{-a}}{\Gamma(b) \Gamma\!\left(c - a\right)} \,{}_2{\textbf F}_1\!\left(a, c - b, a - b + 1, \frac{1}{1 - z}\right) - \frac{{\left(1 - z\right)}^{-b}}{\Gamma(a) \Gamma\!\left(c - b\right)} \,{}_2{\textbf F}_1\!\left(b, c - a, b - a + 1, \frac{1}{1 - z}\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \left[0, \infty\right)
Fungrim symbol | Notation | Short description |
---|---|---|
Sin | sin(z) | Sine |
Pi | π | The constant pi (3.14...) |
Hypergeometric2F1Regularized | 2F1(a,b,c,z) | Regularized Gauss hypergeometric function |
Pow | ab | Power |
Gamma | Γ(z) | Gamma function |
CC | C | Complex numbers |
ClosedOpenInterval | [a,b) | Closed-open interval |
Infinity | ∞ | Positive infinity |
Entry(ID("27bc34"), Formula(Equal(Mul(Div(Sin(Mul(Pi, Sub(b, a))), Pi), Hypergeometric2F1Regularized(a, b, c, z)), Sub(Mul(Div(Pow(Sub(1, z), Neg(a)), Mul(Gamma(b), Gamma(Sub(c, a)))), Hypergeometric2F1Regularized(a, Sub(c, b), Add(Sub(a, b), 1), Div(1, Sub(1, z)))), Mul(Div(Pow(Sub(1, z), Neg(b)), Mul(Gamma(a), Gamma(Sub(c, b)))), Hypergeometric2F1Regularized(b, Sub(c, a), Add(Sub(b, a), 1), Div(1, Sub(1, z))))))), Variables(a, b, c, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, CC), Element(z, CC), NotElement(z, ClosedOpenInterval(0, Infinity)))))
\frac{\sin\!\left(\pi \left(c - a - b\right)\right)}{\pi} \,{}_2{\textbf F}_1\!\left(a, b, c, z\right) = \frac{1}{\Gamma\!\left(c - a\right) \Gamma\!\left(c - b\right)} \,{}_2{\textbf F}_1\!\left(a, b, a + b - c + 1, 1 - z\right) - \frac{{\left(1 - z\right)}^{c - a - b}}{\Gamma(a) \Gamma(b)} \,{}_2{\textbf F}_1\!\left(c - a, c - b, c - a - b + 1, 1 - z\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; z \notin \left[1, \infty\right)
Fungrim symbol | Notation | Short description |
---|---|---|
Sin | sin(z) | Sine |
Pi | π | The constant pi (3.14...) |
Hypergeometric2F1Regularized | 2F1(a,b,c,z) | Regularized Gauss hypergeometric function |
Gamma | Γ(z) | Gamma function |
Pow | ab | Power |
CC | C | Complex numbers |
OpenClosedInterval | (a,b] | Open-closed interval |
Infinity | ∞ | Positive infinity |
ClosedOpenInterval | [a,b) | Closed-open interval |
Entry(ID("db3eb9"), Formula(Equal(Mul(Div(Sin(Mul(Pi, Sub(Sub(c, a), b))), Pi), Hypergeometric2F1Regularized(a, b, c, z)), Sub(Mul(Div(1, Mul(Gamma(Sub(c, a)), Gamma(Sub(c, b)))), Hypergeometric2F1Regularized(a, b, Add(Sub(Add(a, b), c), 1), Sub(1, z))), Mul(Div(Pow(Sub(1, z), Sub(Sub(c, a), b)), Mul(Gamma(a), Gamma(b))), Hypergeometric2F1Regularized(Sub(c, a), Sub(c, b), Add(Sub(Sub(c, a), b), 1), Sub(1, z)))))), Variables(a, b, c, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, CC), Element(z, CC), NotElement(z, OpenClosedInterval(Neg(Infinity), 0)), NotElement(z, ClosedOpenInterval(1, Infinity)))))
\frac{\sin\!\left(\pi \left(c - a - b\right)\right)}{\pi} \,{}_2{\textbf F}_1\!\left(a, b, c, z\right) = \frac{{z}^{-a}}{\Gamma\!\left(c - a\right) \Gamma\!\left(c - b\right)} \,{}_2{\textbf F}_1\!\left(a, a - c + 1, a + b - c + 1, 1 - \frac{1}{z}\right) - \frac{{z}^{a - c} {\left(1 - z\right)}^{c - a - b}}{\Gamma(a) \Gamma(b)} \,{}_2{\textbf F}_1\!\left(c - a, 1 - a, c - a - b + 1, 1 - \frac{1}{z}\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; z \notin \left[1, \infty\right)
Fungrim symbol | Notation | Short description |
---|---|---|
Sin | sin(z) | Sine |
Pi | π | The constant pi (3.14...) |
Hypergeometric2F1Regularized | 2F1(a,b,c,z) | Regularized Gauss hypergeometric function |
Pow | ab | Power |
Gamma | Γ(z) | Gamma function |
CC | C | Complex numbers |
OpenClosedInterval | (a,b] | Open-closed interval |
Infinity | ∞ | Positive infinity |
ClosedOpenInterval | [a,b) | Closed-open interval |
Entry(ID("ca9123"), Formula(Equal(Mul(Div(Sin(Mul(Pi, Sub(Sub(c, a), b))), Pi), Hypergeometric2F1Regularized(a, b, c, z)), Sub(Mul(Div(Pow(z, Neg(a)), Mul(Gamma(Sub(c, a)), Gamma(Sub(c, b)))), Hypergeometric2F1Regularized(a, Add(Sub(a, c), 1), Add(Sub(Add(a, b), c), 1), Sub(1, Div(1, z)))), Mul(Div(Mul(Pow(z, Sub(a, c)), Pow(Sub(1, z), Sub(Sub(c, a), b))), Mul(Gamma(a), Gamma(b))), Hypergeometric2F1Regularized(Sub(c, a), Sub(1, a), Add(Sub(Sub(c, a), b), 1), Sub(1, Div(1, z))))))), Variables(a, b, c, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, CC), Element(z, CC), NotElement(z, OpenClosedInterval(Neg(Infinity), 0)), NotElement(z, ClosedOpenInterval(1, Infinity)))))
\left|\,{}_2F_1\!\left(a, b, c, z\right) - \sum_{k=0}^{N - 1} \frac{\left(a\right)_{k} \left(b\right)_{k}}{\left(c\right)_{k}} \frac{{z}^{k}}{k !}\right| \le \left|\frac{\left(a\right)_{N} \left(b\right)_{N}}{\left(c\right)_{N}} \frac{{z}^{N}}{N !}\right| \begin{cases} \frac{1}{1 - D}, & D < 1\\\infty, & \text{otherwise}\\ \end{cases}\; \text{ where } D = \left|z\right| \left(1 + \frac{\left|a - c\right|}{\left|c + N\right|}\right) \left(1 + \frac{\left|b - 1\right|}{\left|1 + N\right|}\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < 1 \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(c) + N > 0
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | ∣z∣ | Absolute value |
Hypergeometric2F1 | 2F1(a,b,c,z) | Gauss hypergeometric function |
Sum | ∑nf(n) | Sum |
RisingFactorial | (z)k | Rising factorial |
Pow | ab | Power |
Factorial | n! | Factorial |
Infinity | ∞ | Positive infinity |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Re | Re(z) | Real part |
Entry(ID("c60679"), Formula(Where(LessEqual(Abs(Sub(Hypergeometric2F1(a, b, c, z), Sum(Mul(Div(Mul(RisingFactorial(a, k), RisingFactorial(b, k)), RisingFactorial(c, k)), Div(Pow(z, k), Factorial(k))), For(k, 0, Sub(N, 1))))), Mul(Abs(Mul(Div(Mul(RisingFactorial(a, N), RisingFactorial(b, N)), RisingFactorial(c, N)), Div(Pow(z, N), Factorial(N)))), Cases(Tuple(Div(1, Sub(1, D)), Less(D, 1)), Tuple(Infinity, Otherwise)))), Equal(D, Mul(Mul(Abs(z), Add(1, Div(Abs(Sub(a, c)), Abs(Add(c, N))))), Add(1, Div(Abs(Sub(b, 1)), Abs(Add(1, N)))))))), Variables(a, b, c, z, N), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, SetMinus(CC, ZZLessEqual(0))), Element(z, CC), Less(Abs(z), 1), Element(N, ZZGreaterEqual(0)), Greater(Add(Re(c), N), 0))))
\left|\frac{{f}^{(k)}(z)}{k !}\right| \le A {N + k \choose k} {\nu}^{k}\; \text{ where } f(z) = \,{}_2{\textbf F}_1\!\left(a, b, c, z\right),\;\nu = \max\!\left(\frac{1}{\left|z - 1\right|}, \frac{1}{\left|z\right|}\right),\;N = 2 \max\!\left(\sqrt{{\nu}^{-1} \left|a b\right|}, \left|a + b + 1\right| + 2 \left|c\right|\right),\;A = \max\!\left(\left|f(z)\right|, \frac{\left|f'(z)\right|}{\nu \left(N + 1\right)}\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\} \cup \left[1, \infty\right) \;\mathbin{\operatorname{and}}\; k \in \mathbb{Z}_{\ge 0}
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | ∣z∣ | Absolute value |
ComplexDerivative | dzdf(z) | Complex derivative |
Factorial | n! | Factorial |
Binomial | (kn) | Binomial coefficient |
Pow | ab | Power |
Hypergeometric2F1Regularized | 2F1(a,b,c,z) | Regularized Gauss hypergeometric function |
Sqrt | z | Principal square root |
CC | C | Complex numbers |
ClosedOpenInterval | [a,b) | Closed-open interval |
Infinity | ∞ | Positive infinity |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
Entry(ID("853a62"), Formula(Where(LessEqual(Abs(Div(ComplexDerivative(f(z), For(z, z, k)), Factorial(k))), Mul(Mul(A, Binomial(Add(N, k), k)), Pow(nu, k))), Equal(f(z), Hypergeometric2F1Regularized(a, b, c, z)), Equal(nu, Max(Div(1, Abs(Sub(z, 1))), Div(1, Abs(z)))), Equal(N, Mul(2, Max(Sqrt(Mul(Pow(nu, -1), Abs(Mul(a, b)))), Add(Abs(Add(Add(a, b), 1)), Mul(2, Abs(c)))))), Equal(A, Max(Abs(f(z)), Div(Abs(ComplexDerivative(f(z), For(z, z, 1))), Mul(nu, Add(N, 1))))))), Description("Actually valid when", f(z), "is any branch of any solution of the hypergeometric ODE, away from the branch points", Equal(z, 0), "and", Equal(z, 1), ".", "The variables", nu, ",", N, ", and", A, "can be replaced by any upper bounds."), Variables(a, b, c, z, k), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, CC), Element(z, SetMinus(CC, Union(Set(0), ClosedOpenInterval(1, Infinity)))), Element(k, ZZGreaterEqual(0)))), References("F. Johansson, Computing hypergeometric functions rigorously, https://arxiv.org/abs/1606.06977"))
Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.
2021-03-15 19:12:00.328586 UTC