Table of contents: Definitions - Differential equations - Connection formulas - Normalization functions - Derivatives - Hypergeometric representations
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombF | Fℓ,η(z) | Regular Coulomb wave function |
Entry(ID("8b2cb9"), SymbolDefinition(CoulombF, CoulombF(ell, eta, z), "Regular Coulomb wave function"))
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombG | Gℓ,η(z) | Irregular Coulomb wave function |
Entry(ID("f25e3d"), SymbolDefinition(CoulombG, CoulombG(ell, eta, z), "Irregular Coulomb wave function"))
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombH | Hℓ,ηω(z) | Outgoing and ingoing Coulomb wave function |
Entry(ID("16a4e7"), SymbolDefinition(CoulombH, CoulombH(omega, ell, eta, z), "Outgoing and ingoing Coulomb wave function"))
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombC | Cℓ(η) | Coulomb wave function Gamow factor |
Entry(ID("2b12f4"), SymbolDefinition(CoulombC, CoulombC(ell, eta), "Coulomb wave function Gamow factor"))
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombSigma | σℓ(η) | Coulomb wave function phase shift |
Entry(ID("512063"), SymbolDefinition(CoulombSigma, CoulombSigma(ell, eta), "Coulomb wave function phase shift"))
y''(z) + \left(1 - \frac{2 \eta}{z} - \frac{\ell \left(\ell + 1\right)}{{z}^{2}}\right) y(z) = 0\; \text{ where } y(z) = {c}_{1} F_{\ell,\eta}\!\left(z\right) + {c}_{2} G_{\ell,\eta}\!\left(z\right) \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; {c}_{1} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; {c}_{2} \in \mathbb{C}
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
Pow | ab | Power |
CoulombF | Fℓ,η(z) | Regular Coulomb wave function |
CoulombG | Gℓ,η(z) | Irregular Coulomb wave function |
CC | C | Complex numbers |
ConstI | i | Imaginary unit |
ZZLessEqual | Z≤n | Integers less than or equal to n |
OpenClosedInterval | (a,b] | Open-closed interval |
Infinity | ∞ | Positive infinity |
Entry(ID("ad8df6"), Formula(Where(Equal(Add(ComplexDerivative(y(z), For(z, z, 2)), Mul(Sub(Sub(1, Div(Mul(2, eta), z)), Div(Mul(ell, Add(ell, 1)), Pow(z, 2))), y(z))), 0), Equal(y(z), Add(Mul(Subscript(c, 1), CoulombF(ell, eta, z)), Mul(Subscript(c, 2), CoulombG(ell, eta, z)))))), Variables(ell, eta, z, Subscript(c, 1), Subscript(c, 2)), Assumptions(And(Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(Subscript(c, 1), CC), Element(Subscript(c, 2), CC))))
G_{\ell,\eta}\!\left(z\right) \left(\frac{d}{d z}\, F_{\ell,\eta}\!\left(z\right)\right) - \left(\frac{d}{d z}\, G_{\ell,\eta}\!\left(z\right)\right) F_{\ell,\eta}\!\left(z\right) = 1 \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right]
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombG | Gℓ,η(z) | Irregular Coulomb wave function |
ComplexDerivative | dzdf(z) | Complex derivative |
CoulombF | Fℓ,η(z) | Regular Coulomb wave function |
ConstI | i | Imaginary unit |
ZZLessEqual | Z≤n | Integers less than or equal to n |
CC | C | Complex numbers |
OpenClosedInterval | (a,b] | Open-closed interval |
Infinity | ∞ | Positive infinity |
Entry(ID("74274a"), Formula(Equal(Sub(Mul(CoulombG(ell, eta, z), Parentheses(ComplexDerivative(CoulombF(ell, eta, z), For(z, z, 1)))), Mul(Parentheses(ComplexDerivative(CoulombG(ell, eta, z), For(z, z, 1))), CoulombF(ell, eta, z))), 1)), Variables(ell, eta, z), Assumptions(And(And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))
F_{\ell,\eta}\!\left(z\right) = \frac{H^{+}_{\ell,\eta}\!\left(z\right) - H^{-}_{\ell,\eta}\!\left(z\right)}{2 i} \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombF | Fℓ,η(z) | Regular Coulomb wave function |
CoulombH | Hℓ,ηω(z) | Outgoing and ingoing Coulomb wave function |
ConstI | i | Imaginary unit |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("192a3e"), Formula(Equal(CoulombF(ell, eta, z), Div(Sub(CoulombH(1, ell, eta, z), CoulombH(-1, ell, eta, z)), Mul(2, ConstI)))), Variables(ell, eta, z), Assumptions(And(Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, Set(0))))))
G_{\ell,\eta}\!\left(z\right) = \frac{H^{+}_{\ell,\eta}\!\left(z\right) + H^{-}_{\ell,\eta}\!\left(z\right)}{2} \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombG | Gℓ,η(z) | Irregular Coulomb wave function |
CoulombH | Hℓ,ηω(z) | Outgoing and ingoing Coulomb wave function |
CC | C | Complex numbers |
ConstI | i | Imaginary unit |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("8547ab"), Formula(Equal(CoulombG(ell, eta, z), Div(Add(CoulombH(1, ell, eta, z), CoulombH(-1, ell, eta, z)), 2))), Variables(ell, eta, z), Assumptions(And(Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, Set(0))))))
H^{\omega}_{\ell,\eta}\!\left(z\right) = G_{\ell,\eta}\!\left(z\right) + \omega i F_{\ell,\eta}\!\left(z\right) \omega \in \left\{-1, 1\right\} \;\mathbin{\operatorname{and}}\; \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombH | Hℓ,ηω(z) | Outgoing and ingoing Coulomb wave function |
CoulombG | Gℓ,η(z) | Irregular Coulomb wave function |
ConstI | i | Imaginary unit |
CoulombF | Fℓ,η(z) | Regular Coulomb wave function |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("01af55"), Formula(Equal(CoulombH(omega, ell, eta, z), Add(CoulombG(ell, eta, z), Mul(Mul(omega, ConstI), CoulombF(ell, eta, z))))), Variables(omega, ell, eta, z), Assumptions(And(Element(omega, Set(-1, 1)), Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, Set(0))))))
G_{\ell,\eta}\!\left(z\right) = \frac{F_{\ell,\eta}\!\left(z\right) \cos(\chi) - F_{-\ell - 1,\eta}\!\left(z\right)}{\sin(\chi)}\; \text{ where } \chi = \sigma_{\ell}\!\left(\eta\right) - \sigma_{-\ell - 1}\!\left(\eta\right) - \left(\ell + \frac{1}{2}\right) \pi \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; 2 \ell \notin \mathbb{Z} \;\mathbin{\operatorname{and}}\; 1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; -\ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; -\ell - i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombG | Gℓ,η(z) | Irregular Coulomb wave function |
CoulombF | Fℓ,η(z) | Regular Coulomb wave function |
Cos | cos(z) | Cosine |
Sin | sin(z) | Sine |
CoulombSigma | σℓ(η) | Coulomb wave function phase shift |
Pi | π | The constant pi (3.14...) |
CC | C | Complex numbers |
ZZ | Z | Integers |
ConstI | i | Imaginary unit |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("e20938"), Formula(Where(Equal(CoulombG(ell, eta, z), Div(Sub(Mul(CoulombF(ell, eta, z), Cos(chi)), CoulombF(Sub(Neg(ell), 1), eta, z)), Sin(chi))), Equal(chi, Sub(Sub(CoulombSigma(ell, eta), CoulombSigma(Sub(Neg(ell), 1), eta)), Mul(Add(ell, Div(1, 2)), Pi))))), Variables(ell, eta, z), Assumptions(And(Element(ell, CC), Element(eta, CC), NotElement(Mul(2, ell), ZZ), NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Add(Neg(ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Neg(ell), Mul(ConstI, eta)), ZZLessEqual(0)), Element(z, SetMinus(CC, Set(0))))))
H^{\omega}_{\ell,\eta}\!\left(z\right) = \frac{F_{\ell,\eta}\!\left(z\right) {e}^{\omega i \chi} - F_{-\ell - 1,\eta}\!\left(z\right)}{\sin(\chi)}\; \text{ where } \chi = \sigma_{\ell}\!\left(\eta\right) - \sigma_{-\ell - 1}\!\left(\eta\right) - \left(\ell + \frac{1}{2}\right) \pi \omega \in \left\{-1, 1\right\} \;\mathbin{\operatorname{and}}\; \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; 2 \ell \notin \mathbb{Z} \;\mathbin{\operatorname{and}}\; 1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; -\ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; -\ell - i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombH | Hℓ,ηω(z) | Outgoing and ingoing Coulomb wave function |
CoulombF | Fℓ,η(z) | Regular Coulomb wave function |
Exp | ez | Exponential function |
ConstI | i | Imaginary unit |
Sin | sin(z) | Sine |
CoulombSigma | σℓ(η) | Coulomb wave function phase shift |
Pi | π | The constant pi (3.14...) |
CC | C | Complex numbers |
ZZ | Z | Integers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("304559"), Formula(Where(Equal(CoulombH(omega, ell, eta, z), Div(Sub(Mul(CoulombF(ell, eta, z), Exp(Mul(Mul(omega, ConstI), chi))), CoulombF(Sub(Neg(ell), 1), eta, z)), Sin(chi))), Equal(chi, Sub(Sub(CoulombSigma(ell, eta), CoulombSigma(Sub(Neg(ell), 1), eta)), Mul(Add(ell, Div(1, 2)), Pi))))), Variables(omega, ell, eta, z), Assumptions(And(Element(omega, Set(-1, 1)), Element(ell, CC), Element(eta, CC), NotElement(Mul(2, ell), ZZ), NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Add(Neg(ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Neg(ell), Mul(ConstI, eta)), ZZLessEqual(0)), Element(z, SetMinus(CC, Set(0))))))
C_{\ell}\!\left(\eta\right) = \frac{{2}^{\ell}}{\Gamma\!\left(2 \ell + 2\right)} \exp\!\left(\frac{\log \Gamma\!\left(1 + \ell + i \eta\right) + \log \Gamma\!\left(1 + \ell - i \eta\right) - \pi \eta}{2}\right) \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right)
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombC | Cℓ(η) | Coulomb wave function Gamow factor |
Pow | ab | Power |
Gamma | Γ(z) | Gamma function |
Exp | ez | Exponential function |
LogGamma | logΓ(z) | Logarithmic gamma function |
ConstI | i | Imaginary unit |
Pi | π | The constant pi (3.14...) |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("4a4739"), Formula(Equal(CoulombC(ell, eta), Mul(Div(Pow(2, ell), Gamma(Add(Mul(2, ell), 2))), Exp(Div(Sub(Add(LogGamma(Add(Add(1, ell), Mul(ConstI, eta))), LogGamma(Sub(Add(1, ell), Mul(ConstI, eta)))), Mul(Pi, eta)), 2))))), Variables(ell, eta), Assumptions(And(Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))))))
\sigma_{\ell}\!\left(\eta\right) = \frac{\log \Gamma\!\left(1 + \ell + i \eta\right) - \log \Gamma\!\left(1 + \ell - i \eta\right)}{2 i} \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right)
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombSigma | σℓ(η) | Coulomb wave function phase shift |
LogGamma | logΓ(z) | Logarithmic gamma function |
ConstI | i | Imaginary unit |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("ed2bf6"), Formula(Equal(CoulombSigma(ell, eta), Div(Sub(LogGamma(Add(Add(1, ell), Mul(ConstI, eta))), LogGamma(Sub(Add(1, ell), Mul(ConstI, eta)))), Mul(2, ConstI)))), Variables(ell, eta), Assumptions(And(Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))))))
\frac{d}{d z}\, F_{\ell,\eta}\!\left(z\right) = \left(\frac{\ell + 1}{z} + \frac{\eta}{\ell + 1}\right) F_{\ell,\eta}\!\left(z\right) - \frac{\sqrt{1 + \ell + i \eta} \sqrt{1 + \ell - i \eta}}{\ell + 1} F_{\ell + 1,\eta}\!\left(z\right) \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \ell \ne -1 \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right]
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
CoulombF | Fℓ,η(z) | Regular Coulomb wave function |
Sqrt | z | Principal square root |
ConstI | i | Imaginary unit |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
OpenClosedInterval | (a,b] | Open-closed interval |
Infinity | ∞ | Positive infinity |
Entry(ID("a51a4b"), Formula(Equal(ComplexDerivative(CoulombF(ell, eta, z), For(z, z, 1)), Sub(Mul(Add(Div(Add(ell, 1), z), Div(eta, Add(ell, 1))), CoulombF(ell, eta, z)), Mul(Div(Mul(Sqrt(Add(Add(1, ell), Mul(ConstI, eta))), Sqrt(Sub(Add(1, ell), Mul(ConstI, eta)))), Add(ell, 1)), CoulombF(Add(ell, 1), eta, z))))), Variables(ell, eta, z), Assumptions(And(Element(ell, CC), NotEqual(ell, -1), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))
\frac{d}{d z}\, G_{\ell,\eta}\!\left(z\right) = \left(\frac{\ell + 1}{z} + \frac{\eta}{\ell + 1}\right) G_{\ell,\eta}\!\left(z\right) - \frac{\sqrt{1 + \ell + i \eta} \sqrt{1 + \ell - i \eta}}{\ell + 1} G_{\ell + 1,\eta}\!\left(z\right) \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \ell \ne -1 \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right]
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
CoulombG | Gℓ,η(z) | Irregular Coulomb wave function |
Sqrt | z | Principal square root |
ConstI | i | Imaginary unit |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
OpenClosedInterval | (a,b] | Open-closed interval |
Infinity | ∞ | Positive infinity |
Entry(ID("2fec14"), Formula(Equal(ComplexDerivative(CoulombG(ell, eta, z), For(z, z, 1)), Sub(Mul(Add(Div(Add(ell, 1), z), Div(eta, Add(ell, 1))), CoulombG(ell, eta, z)), Mul(Div(Mul(Sqrt(Add(Add(1, ell), Mul(ConstI, eta))), Sqrt(Sub(Add(1, ell), Mul(ConstI, eta)))), Add(ell, 1)), CoulombG(Add(ell, 1), eta, z))))), Variables(ell, eta, z), Assumptions(And(Element(ell, CC), NotEqual(ell, -1), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))
f''(z) = \left(\frac{2 \eta}{z} + \frac{\ell \left(\ell + 1\right)}{{z}^{2}} - 1\right) f(z)\; \text{ where } f(z) = {c}_{1} F_{\ell,\eta}\!\left(z\right) + {c}_{2} G_{\ell,\eta}\!\left(z\right) {c}_{1} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; {c}_{2} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right]
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
Pow | ab | Power |
CoulombF | Fℓ,η(z) | Regular Coulomb wave function |
CoulombG | Gℓ,η(z) | Irregular Coulomb wave function |
CC | C | Complex numbers |
ConstI | i | Imaginary unit |
ZZLessEqual | Z≤n | Integers less than or equal to n |
OpenClosedInterval | (a,b] | Open-closed interval |
Infinity | ∞ | Positive infinity |
Entry(ID("07a654"), Formula(Where(Equal(ComplexDerivative(f(z), For(z, z, 2)), Mul(Sub(Add(Div(Mul(2, eta), z), Div(Mul(ell, Add(ell, 1)), Pow(z, 2))), 1), f(z))), Equal(f(z), Add(Mul(Subscript(c, 1), CoulombF(ell, eta, z)), Mul(Subscript(c, 2), CoulombG(ell, eta, z)))))), Variables(ell, eta, Subscript(c, 1), Subscript(c, 2), z), Assumptions(And(Element(Subscript(c, 1), CC), Element(Subscript(c, 2), CC), Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))
f'''(z) = \left(\frac{2 \eta}{z} + \frac{\ell \left(\ell + 1\right)}{{z}^{2}} - 1\right) f'(z) - 2 \left(\frac{\eta}{{z}^{2}} + \frac{\ell \left(\ell + 1\right)}{{z}^{3}}\right) f(z)\; \text{ where } f(z) = {c}_{1} F_{\ell,\eta}\!\left(z\right) + {c}_{2} G_{\ell,\eta}\!\left(z\right) {c}_{1} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; {c}_{2} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right]
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
Pow | ab | Power |
CoulombF | Fℓ,η(z) | Regular Coulomb wave function |
CoulombG | Gℓ,η(z) | Irregular Coulomb wave function |
CC | C | Complex numbers |
ConstI | i | Imaginary unit |
ZZLessEqual | Z≤n | Integers less than or equal to n |
OpenClosedInterval | (a,b] | Open-closed interval |
Infinity | ∞ | Positive infinity |
Entry(ID("faa118"), Formula(Where(Equal(ComplexDerivative(f(z), For(z, z, 3)), Sub(Mul(Sub(Add(Div(Mul(2, eta), z), Div(Mul(ell, Add(ell, 1)), Pow(z, 2))), 1), ComplexDerivative(f(z), For(z, z, 1))), Mul(Mul(2, Add(Div(eta, Pow(z, 2)), Div(Mul(ell, Add(ell, 1)), Pow(z, 3)))), f(z)))), Equal(f(z), Add(Mul(Subscript(c, 1), CoulombF(ell, eta, z)), Mul(Subscript(c, 2), CoulombG(ell, eta, z)))))), Variables(ell, eta, Subscript(c, 1), Subscript(c, 2), z), Assumptions(And(Element(Subscript(c, 1), CC), Element(Subscript(c, 2), CC), Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))
\frac{{f}^{(r + 4)}(z)}{\left(r + 4\right)!} = -\frac{1}{{z}^{2} \left({r}^{2} + 7 r + 12\right)} \left(2 \left({r}^{2} + 5 r + 6\right) z \frac{{f}^{(r + 3)}(z)}{\left(r + 3\right)!} + \left({r}^{2} + 3 r + {z}^{2} - 2 z \eta - \ell \left(\ell + 1\right) + 2\right) \frac{{f}^{(r + 2)}(z)}{\left(r + 2\right)!} + 2 \left(z - \eta\right) \frac{{f}^{(r + 1)}(z)}{\left(r + 1\right)!} + \frac{{f}^{(r)}(z)}{r !}\right)\; \text{ where } f(z) = {c}_{1} F_{\ell,\eta}\!\left(z\right) + {c}_{2} G_{\ell,\eta}\!\left(z\right) r \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; {c}_{1} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; {c}_{2} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right]
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | dzdf(z) | Complex derivative |
Factorial | n! | Factorial |
Pow | ab | Power |
CoulombF | Fℓ,η(z) | Regular Coulomb wave function |
CoulombG | Gℓ,η(z) | Irregular Coulomb wave function |
ZZGreaterEqual | Z≥n | Integers greater than or equal to n |
CC | C | Complex numbers |
ConstI | i | Imaginary unit |
ZZLessEqual | Z≤n | Integers less than or equal to n |
OpenClosedInterval | (a,b] | Open-closed interval |
Infinity | ∞ | Positive infinity |
Entry(ID("eca10b"), Formula(Where(Equal(Div(ComplexDerivative(f(z), For(z, z, Add(r, 4))), Factorial(Add(r, 4))), Mul(Div(-1, Mul(Pow(z, 2), Add(Add(Pow(r, 2), Mul(7, r)), 12))), Add(Add(Add(Mul(Mul(Mul(2, Add(Add(Pow(r, 2), Mul(5, r)), 6)), z), Div(ComplexDerivative(f(z), For(z, z, Add(r, 3))), Factorial(Add(r, 3)))), Mul(Add(Sub(Sub(Add(Add(Pow(r, 2), Mul(3, r)), Pow(z, 2)), Mul(Mul(2, z), eta)), Mul(ell, Add(ell, 1))), 2), Div(ComplexDerivative(f(z), For(z, z, Add(r, 2))), Factorial(Add(r, 2))))), Mul(Mul(2, Sub(z, eta)), Div(ComplexDerivative(f(z), For(z, z, Add(r, 1))), Factorial(Add(r, 1))))), Div(ComplexDerivative(f(z), For(z, z, r)), Factorial(r))))), Equal(f(z), Add(Mul(Subscript(c, 1), CoulombF(ell, eta, z)), Mul(Subscript(c, 2), CoulombG(ell, eta, z)))))), Variables(r, ell, eta, Subscript(c, 1), Subscript(c, 2), z), Assumptions(And(Element(r, ZZGreaterEqual(0)), Element(Subscript(c, 1), CC), Element(Subscript(c, 2), CC), Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))
F_{\ell,\eta}\!\left(z\right) = C_{\ell}\!\left(\eta\right) {z}^{\ell + 1} {e}^{\omega i z} \,{}_1F_1\!\left(1 + \ell + \omega i \eta, 2 \ell + 2, -2 \omega i z\right) \omega \in \left\{-1, 1\right\} \;\mathbin{\operatorname{and}}\; \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; 2 \ell + 2 \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombF | Fℓ,η(z) | Regular Coulomb wave function |
CoulombC | Cℓ(η) | Coulomb wave function Gamow factor |
Pow | ab | Power |
Exp | ez | Exponential function |
ConstI | i | Imaginary unit |
Hypergeometric1F1 | 1F1(a,b,z) | Kummer confluent hypergeometric function |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("d280c5"), Formula(Equal(CoulombF(ell, eta, z), Mul(Mul(Mul(CoulombC(ell, eta), Pow(z, Add(ell, 1))), Exp(Mul(Mul(omega, ConstI), z))), Hypergeometric1F1(Add(Add(1, ell), Mul(Mul(omega, ConstI), eta)), Add(Mul(2, ell), 2), Neg(Mul(Mul(Mul(2, omega), ConstI), z)))))), Variables(omega, ell, eta, z), Assumptions(And(Element(omega, Set(-1, 1)), Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), NotElement(Add(Mul(2, ell), 2), ZZLessEqual(0)), Element(z, SetMinus(CC, Set(0))))))
F_{\ell,\eta}\!\left(z\right) = {2}^{\ell} \exp\!\left(\frac{\log \Gamma\!\left(1 + \ell + i \eta\right) + \log \Gamma\!\left(1 + \ell - i \eta\right) - \pi \eta}{2}\right) {z}^{\ell + 1} {e}^{\omega i z} \,{}_1{\textbf F}_1\!\left(1 + \ell + \omega i \eta, 2 \ell + 2, -2 \omega i z\right) \omega \in \left\{-1, 1\right\} \;\mathbin{\operatorname{and}}\; \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombF | Fℓ,η(z) | Regular Coulomb wave function |
Pow | ab | Power |
Exp | ez | Exponential function |
LogGamma | logΓ(z) | Logarithmic gamma function |
ConstI | i | Imaginary unit |
Pi | π | The constant pi (3.14...) |
Hypergeometric1F1Regularized | 1F1(a,b,z) | Regularized Kummer confluent hypergeometric function |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("2a2f18"), Formula(Equal(CoulombF(ell, eta, z), Mul(Mul(Mul(Mul(Pow(2, ell), Exp(Div(Sub(Add(LogGamma(Add(Add(1, ell), Mul(ConstI, eta))), LogGamma(Sub(Add(1, ell), Mul(ConstI, eta)))), Mul(Pi, eta)), 2))), Pow(z, Add(ell, 1))), Exp(Mul(Mul(omega, ConstI), z))), Hypergeometric1F1Regularized(Add(Add(1, ell), Mul(Mul(omega, ConstI), eta)), Add(Mul(2, ell), 2), Neg(Mul(Mul(Mul(2, omega), ConstI), z)))))), Variables(omega, ell, eta, z), Assumptions(And(Element(omega, Set(-1, 1)), Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, Set(0))))))
F_{\ell,\eta}\!\left(z\right) = {2}^{\ell} {z}^{\ell + 1} \exp\!\left(\frac{\log \Gamma(u) + \log \Gamma(v) - \pi \eta}{2}\right) \left(\frac{{e}^{i z} U^{*}\!\left(u, 2 \ell + 2, -2 i z\right)}{{\left(2 i z\right)}^{u} \Gamma(v)} + \frac{{e}^{-i z} U^{*}\!\left(v, 2 \ell + 2, 2 i z\right)}{{\left(-2 i z\right)}^{v} \Gamma(u)}\right)\; \text{ where } u = 1 + \ell + i \eta,\;v = 1 + \ell - i \eta \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombF | Fℓ,η(z) | Regular Coulomb wave function |
Pow | ab | Power |
Exp | ez | Exponential function |
LogGamma | logΓ(z) | Logarithmic gamma function |
Pi | π | The constant pi (3.14...) |
ConstI | i | Imaginary unit |
HypergeometricUStar | U∗(a,b,z) | Scaled Tricomi confluent hypergeometric function |
Gamma | Γ(z) | Gamma function |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Entry(ID("1976e1"), Formula(Equal(CoulombF(ell, eta, z), Where(Mul(Mul(Mul(Pow(2, ell), Pow(z, Add(ell, 1))), Exp(Div(Sub(Add(LogGamma(u), LogGamma(v)), Mul(Pi, eta)), 2))), Add(Div(Mul(Exp(Mul(ConstI, z)), HypergeometricUStar(u, Add(Mul(2, ell), 2), Neg(Mul(Mul(2, ConstI), z)))), Mul(Pow(Mul(Mul(2, ConstI), z), u), Gamma(v))), Div(Mul(Exp(Mul(Neg(ConstI), z)), HypergeometricUStar(v, Add(Mul(2, ell), 2), Mul(Mul(2, ConstI), z))), Mul(Pow(Neg(Mul(Mul(2, ConstI), z)), v), Gamma(u))))), Equal(u, Add(Add(1, ell), Mul(ConstI, eta))), Equal(v, Sub(Add(1, ell), Mul(ConstI, eta)))))), Variables(ell, eta, z), Assumptions(And(Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, Set(0))))))
G_{\ell,\eta}\!\left(z\right) = \frac{1}{2} \left({\left(2 z\right)}^{-i \eta} \exp\!\left(i \left(z - \frac{\ell \pi}{2} + \sigma_{\ell}\!\left(\eta\right)\right)\right) U^{*}\!\left(1 + \ell + i \eta, 2 \ell + 2, -2 i z\right) + {\left(2 z\right)}^{i \eta} \exp\!\left(-i \left(z - \frac{\ell \pi}{2} + \sigma_{\ell}\!\left(\eta\right)\right)\right) U^{*}\!\left(1 + \ell - i \eta, 2 \ell + 2, 2 i z\right)\right) \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombG | Gℓ,η(z) | Irregular Coulomb wave function |
Pow | ab | Power |
ConstI | i | Imaginary unit |
Exp | ez | Exponential function |
Pi | π | The constant pi (3.14...) |
CoulombSigma | σℓ(η) | Coulomb wave function phase shift |
HypergeometricUStar | U∗(a,b,z) | Scaled Tricomi confluent hypergeometric function |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Re | Re(z) | Real part |
Entry(ID("e2efbf"), Formula(Equal(CoulombG(ell, eta, z), Mul(Div(1, 2), Add(Mul(Mul(Pow(Mul(2, z), Neg(Mul(ConstI, eta))), Exp(Mul(ConstI, Add(Sub(z, Div(Mul(ell, Pi), 2)), CoulombSigma(ell, eta))))), HypergeometricUStar(Add(Add(1, ell), Mul(ConstI, eta)), Add(Mul(2, ell), 2), Neg(Mul(Mul(2, ConstI), z)))), Mul(Mul(Pow(Mul(2, z), Mul(ConstI, eta)), Exp(Neg(Mul(ConstI, Add(Sub(z, Div(Mul(ell, Pi), 2)), CoulombSigma(ell, eta)))))), HypergeometricUStar(Sub(Add(1, ell), Mul(ConstI, eta)), Add(Mul(2, ell), 2), Mul(Mul(2, ConstI), z))))))), Variables(ell, eta, z), Assumptions(And(Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, Set(0))), Greater(Re(z), 0))))
G_{\ell,\eta}\!\left(z\right) = {\left(2 z\right)}^{-i \eta} \exp\!\left(i \left(z - \frac{\ell \pi}{2} + \sigma_{\ell}\!\left(\eta\right)\right)\right) U^{*}\!\left(1 + \ell + i \eta, 2 \ell + 2, -2 i z\right) - i F_{\ell,\eta}\!\left(z\right) \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; \left(\operatorname{Im}(z) \ge 0 \;\mathbin{\operatorname{or}}\; \operatorname{Re}(z) > 0\right)
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombG | Gℓ,η(z) | Irregular Coulomb wave function |
Pow | ab | Power |
ConstI | i | Imaginary unit |
Exp | ez | Exponential function |
Pi | π | The constant pi (3.14...) |
CoulombSigma | σℓ(η) | Coulomb wave function phase shift |
HypergeometricUStar | U∗(a,b,z) | Scaled Tricomi confluent hypergeometric function |
CoulombF | Fℓ,η(z) | Regular Coulomb wave function |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Im | Im(z) | Imaginary part |
Re | Re(z) | Real part |
Entry(ID("8027e8"), Formula(Equal(CoulombG(ell, eta, z), Sub(Mul(Mul(Pow(Mul(2, z), Neg(Mul(ConstI, eta))), Exp(Mul(ConstI, Add(Sub(z, Div(Mul(ell, Pi), 2)), CoulombSigma(ell, eta))))), HypergeometricUStar(Add(Add(1, ell), Mul(ConstI, eta)), Add(Mul(2, ell), 2), Neg(Mul(Mul(2, ConstI), z)))), Mul(ConstI, CoulombF(ell, eta, z))))), Variables(ell, eta, z), Assumptions(And(Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, Set(0))), Or(GreaterEqual(Im(z), 0), Greater(Re(z), 0)))))
G_{\ell,\eta}\!\left(z\right) = {\left(2 z\right)}^{i \eta} \exp\!\left(-i \left(z - \frac{\ell \pi}{2} + \sigma_{\ell}\!\left(\eta\right)\right)\right) U^{*}\!\left(1 + \ell - i \eta, 2 \ell + 2, 2 i z\right) + i F_{\ell,\eta}\!\left(z\right) \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; \left(\operatorname{Im}(z) < 0 \;\mathbin{\operatorname{or}}\; \operatorname{Re}(z) \ge 0\right)
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombG | Gℓ,η(z) | Irregular Coulomb wave function |
Pow | ab | Power |
ConstI | i | Imaginary unit |
Exp | ez | Exponential function |
Pi | π | The constant pi (3.14...) |
CoulombSigma | σℓ(η) | Coulomb wave function phase shift |
HypergeometricUStar | U∗(a,b,z) | Scaled Tricomi confluent hypergeometric function |
CoulombF | Fℓ,η(z) | Regular Coulomb wave function |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Im | Im(z) | Imaginary part |
Re | Re(z) | Real part |
Entry(ID("69e5fb"), Formula(Equal(CoulombG(ell, eta, z), Add(Mul(Mul(Pow(Mul(2, z), Mul(ConstI, eta)), Exp(Neg(Mul(ConstI, Add(Sub(z, Div(Mul(ell, Pi), 2)), CoulombSigma(ell, eta)))))), HypergeometricUStar(Sub(Add(1, ell), Mul(ConstI, eta)), Add(Mul(2, ell), 2), Mul(Mul(2, ConstI), z))), Mul(ConstI, CoulombF(ell, eta, z))))), Variables(ell, eta, z), Assumptions(And(Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, Set(0))), Or(Less(Im(z), 0), GreaterEqual(Re(z), 0)))))
H^{+}_{\ell,\eta}\!\left(z\right) = {\left(2 z\right)}^{-i \eta} \exp\!\left(i \left(z - \frac{\ell \pi}{2} + \sigma_{\ell}\!\left(\eta\right)\right)\right) U^{*}\!\left(1 + \ell + i \eta, 2 \ell + 2, -2 i z\right) \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; \left(\operatorname{Im}(z) \ge 0 \;\mathbin{\operatorname{or}}\; \operatorname{Re}(z) > 0\right)
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombH | Hℓ,ηω(z) | Outgoing and ingoing Coulomb wave function |
Pow | ab | Power |
ConstI | i | Imaginary unit |
Exp | ez | Exponential function |
Pi | π | The constant pi (3.14...) |
CoulombSigma | σℓ(η) | Coulomb wave function phase shift |
HypergeometricUStar | U∗(a,b,z) | Scaled Tricomi confluent hypergeometric function |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Im | Im(z) | Imaginary part |
Re | Re(z) | Real part |
Entry(ID("bcdfc6"), Formula(Equal(CoulombH(1, ell, eta, z), Mul(Mul(Pow(Mul(2, z), Neg(Mul(ConstI, eta))), Exp(Mul(ConstI, Add(Sub(z, Div(Mul(ell, Pi), 2)), CoulombSigma(ell, eta))))), HypergeometricUStar(Add(Add(1, ell), Mul(ConstI, eta)), Add(Mul(2, ell), 2), Neg(Mul(Mul(2, ConstI), z)))))), Variables(ell, eta, z), Assumptions(And(Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, Set(0))), Or(GreaterEqual(Im(z), 0), Greater(Re(z), 0)))))
H^{+}_{\ell,\eta}\!\left(z\right) = {\left(2 z\right)}^{i \eta} \exp\!\left(-i \left(z - \frac{\ell \pi}{2} + \sigma_{\ell}\!\left(\eta\right)\right)\right) U^{*}\!\left(1 + \ell - i \eta, 2 \ell + 2, 2 i z\right) + 2 i F_{\ell,\eta}\!\left(z\right) \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; \left(\operatorname{Im}(z) < 0 \;\mathbin{\operatorname{or}}\; \operatorname{Re}(z) \ge 0\right)
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombH | Hℓ,ηω(z) | Outgoing and ingoing Coulomb wave function |
Pow | ab | Power |
ConstI | i | Imaginary unit |
Exp | ez | Exponential function |
Pi | π | The constant pi (3.14...) |
CoulombSigma | σℓ(η) | Coulomb wave function phase shift |
HypergeometricUStar | U∗(a,b,z) | Scaled Tricomi confluent hypergeometric function |
CoulombF | Fℓ,η(z) | Regular Coulomb wave function |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Im | Im(z) | Imaginary part |
Re | Re(z) | Real part |
Entry(ID("f0414a"), Formula(Equal(CoulombH(1, ell, eta, z), Add(Mul(Mul(Pow(Mul(2, z), Mul(ConstI, eta)), Exp(Neg(Mul(ConstI, Add(Sub(z, Div(Mul(ell, Pi), 2)), CoulombSigma(ell, eta)))))), HypergeometricUStar(Sub(Add(1, ell), Mul(ConstI, eta)), Add(Mul(2, ell), 2), Mul(Mul(2, ConstI), z))), Mul(Mul(2, ConstI), CoulombF(ell, eta, z))))), Variables(ell, eta, z), Assumptions(And(Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, Set(0))), Or(Less(Im(z), 0), GreaterEqual(Re(z), 0)))))
H^{-}_{\ell,\eta}\!\left(z\right) = {\left(2 z\right)}^{i \eta} \exp\!\left(-i \left(z - \frac{\ell \pi}{2} + \sigma_{\ell}\!\left(\eta\right)\right)\right) U^{*}\!\left(1 + \ell - i \eta, 2 \ell + 2, 2 i z\right) \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; \left(\operatorname{Im}(z) < 0 \;\mathbin{\operatorname{or}}\; \operatorname{Re}(z) \ge 0\right)
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombH | Hℓ,ηω(z) | Outgoing and ingoing Coulomb wave function |
Pow | ab | Power |
ConstI | i | Imaginary unit |
Exp | ez | Exponential function |
Pi | π | The constant pi (3.14...) |
CoulombSigma | σℓ(η) | Coulomb wave function phase shift |
HypergeometricUStar | U∗(a,b,z) | Scaled Tricomi confluent hypergeometric function |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Im | Im(z) | Imaginary part |
Re | Re(z) | Real part |
Entry(ID("781eae"), Formula(Equal(CoulombH(-1, ell, eta, z), Mul(Mul(Pow(Mul(2, z), Mul(ConstI, eta)), Exp(Neg(Mul(ConstI, Add(Sub(z, Div(Mul(ell, Pi), 2)), CoulombSigma(ell, eta)))))), HypergeometricUStar(Sub(Add(1, ell), Mul(ConstI, eta)), Add(Mul(2, ell), 2), Mul(Mul(2, ConstI), z))))), Variables(ell, eta, z), Assumptions(And(Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, Set(0))), Or(Less(Im(z), 0), GreaterEqual(Re(z), 0)))))
H^{-}_{\ell,\eta}\!\left(z\right) = {\left(2 z\right)}^{-i \eta} \exp\!\left(i \left(z - \frac{\ell \pi}{2} + \sigma_{\ell}\!\left(\eta\right)\right)\right) U^{*}\!\left(1 + \ell + i \eta, 2 \ell + 2, -2 i z\right) - 2 i F_{\ell,\eta}\!\left(z\right) \ell \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; \left(\operatorname{Im}(z) \ge 0 \;\mathbin{\operatorname{or}}\; \operatorname{Re}(z) > 0\right)
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombH | Hℓ,ηω(z) | Outgoing and ingoing Coulomb wave function |
Pow | ab | Power |
ConstI | i | Imaginary unit |
Exp | ez | Exponential function |
Pi | π | The constant pi (3.14...) |
CoulombSigma | σℓ(η) | Coulomb wave function phase shift |
HypergeometricUStar | U∗(a,b,z) | Scaled Tricomi confluent hypergeometric function |
CoulombF | Fℓ,η(z) | Regular Coulomb wave function |
CC | C | Complex numbers |
ZZLessEqual | Z≤n | Integers less than or equal to n |
Im | Im(z) | Imaginary part |
Re | Re(z) | Real part |
Entry(ID("0cc301"), Formula(Equal(CoulombH(-1, ell, eta, z), Sub(Mul(Mul(Pow(Mul(2, z), Neg(Mul(ConstI, eta))), Exp(Mul(ConstI, Add(Sub(z, Div(Mul(ell, Pi), 2)), CoulombSigma(ell, eta))))), HypergeometricUStar(Add(Add(1, ell), Mul(ConstI, eta)), Add(Mul(2, ell), 2), Neg(Mul(Mul(2, ConstI), z)))), Mul(Mul(2, ConstI), CoulombF(ell, eta, z))))), Variables(ell, eta, z), Assumptions(And(Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, Set(0))), Or(GreaterEqual(Im(z), 0), Greater(Re(z), 0)))))
Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.
2021-03-15 19:12:00.328586 UTC