Symbol: Sign — sgn ( z ) \operatorname{sgn}(z) s g n ( z )
— Sign function
Domain Codomain z ∈ R z \in \mathbb{R} z ∈ R
sgn ( z ) ∈ { − 1 , 0 , 1 } \operatorname{sgn}(z) \in \left\{-1, 0, 1\right\} s g n ( z ) ∈ { − 1 , 0 , 1 }
z ∈ C ∖ { 0 } z \in \mathbb{C} \setminus \left\{0\right\} z ∈ C ∖ { 0 }
sgn ( z ) ∈ T \operatorname{sgn}(z) \in \mathbb{T} s g n ( z ) ∈ T
z ∈ { ∞ } z \in \left\{\infty\right\} z ∈ { ∞ }
sgn ( z ) ∈ { 1 } \operatorname{sgn}(z) \in \left\{1\right\} s g n ( z ) ∈ { 1 }
z ∈ { − ∞ } z \in \left\{-\infty\right\} z ∈ { − ∞ }
sgn ( z ) ∈ { − 1 } \operatorname{sgn}(z) \in \left\{-1\right\} s g n ( z ) ∈ { − 1 }
Table data:
( P , Q ) \left(P, Q\right) ( P , Q )
such that
( P ) ⟹ ( Q ) \left(P\right) \;\implies\; \left(Q\right) ( P ) ⟹ ( Q )
Definitions:
Fungrim symbol Notation Short description Sign sgn ( z ) \operatorname{sgn}(z) s g n ( z )
Sign function RR R \mathbb{R} R
Real numbers CC C \mathbb{C} C
Complex numbers UnitCircle T \mathbb{T} T
Unit circle Infinity ∞ \infty ∞
Positive infinity
Source code for this entry:
Entry(ID("5e639e"),
SymbolDefinition(Sign, Sign(z), "Sign function"),
Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(Tuple(Element(z, RR), Element(Sign(z), Set(-1, 0, 1))), Tuple(Element(z, SetMinus(CC, Set(0))), Element(Sign(z), UnitCircle)), Tuple(Element(z, Set(Infinity)), Element(Sign(z), Set(1))), Tuple(Element(z, Set(Neg(Infinity))), Element(Sign(z), Set(-1))))))
Symbol: Abs — ∣ z ∣ \left|z\right| ∣ z ∣
— Absolute value
Domain Codomain z ∈ R z \in \mathbb{R} z ∈ R
∣ z ∣ ∈ [ 0 , ∞ ) \left|z\right| \in \left[0, \infty\right) ∣ z ∣ ∈ [ 0 , ∞ )
z ∈ C z \in \mathbb{C} z ∈ C
∣ z ∣ ∈ [ 0 , ∞ ) \left|z\right| \in \left[0, \infty\right) ∣ z ∣ ∈ [ 0 , ∞ )
z ∈ { ∞ , − ∞ , ∞ ~ } z \in \left\{\infty, -\infty, {\tilde \infty}\right\} z ∈ { ∞ , − ∞ , ∞ ~ }
∣ z ∣ ∈ { ∞ } \left|z\right| \in \left\{\infty\right\} ∣ z ∣ ∈ { ∞ }
Table data:
( P , Q ) \left(P, Q\right) ( P , Q )
such that
( P ) ⟹ ( Q ) \left(P\right) \;\implies\; \left(Q\right) ( P ) ⟹ ( Q )
Definitions:
Fungrim symbol Notation Short description Abs ∣ z ∣ \left|z\right| ∣ z ∣
Absolute value RR R \mathbb{R} R
Real numbers ClosedOpenInterval [ a , b ) \left[a, b\right) [ a , b )
Closed-open interval Infinity ∞ \infty ∞
Positive infinity CC C \mathbb{C} C
Complex numbers UnsignedInfinity ∞ ~ {\tilde \infty} ∞ ~
Unsigned infinity
Source code for this entry:
Entry(ID("920cc8"),
SymbolDefinition(Abs, Abs(z), "Absolute value"),
Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(Tuple(Element(z, RR), Element(Abs(z), ClosedOpenInterval(0, Infinity))), Tuple(Element(z, CC), Element(Abs(z), ClosedOpenInterval(0, Infinity))), Tuple(Element(z, Set(Infinity, Neg(Infinity), UnsignedInfinity)), Element(Abs(z), Set(Infinity))))))
Symbol: Arg — arg ( z ) \arg(z) arg ( z )
— Complex argument
Domain Codomain z ∈ R z \in \mathbb{R} z ∈ R
arg ( z ) ∈ { 0 , π } \arg(z) \in \left\{0, \pi\right\} arg ( z ) ∈ { 0 , π }
z ∈ C z \in \mathbb{C} z ∈ C
arg ( z ) ∈ ( − π , π ] \arg(z) \in \left(-\pi, \pi\right] arg ( z ) ∈ ( − π , π ]
z ∈ { ∞ } z \in \left\{\infty\right\} z ∈ { ∞ }
arg ( z ) ∈ { 0 } \arg(z) \in \left\{0\right\} arg ( z ) ∈ { 0 }
z ∈ { − ∞ } z \in \left\{-\infty\right\} z ∈ { − ∞ }
arg ( z ) ∈ { π } \arg(z) \in \left\{\pi\right\} arg ( z ) ∈ { π }
Table data:
( P , Q ) \left(P, Q\right) ( P , Q )
such that
( P ) ⟹ ( Q ) \left(P\right) \;\implies\; \left(Q\right) ( P ) ⟹ ( Q )
Definitions:
Fungrim symbol Notation Short description Arg arg ( z ) \arg(z) arg ( z )
Complex argument RR R \mathbb{R} R
Real numbers Pi π \pi π
The constant pi (3.14...) CC C \mathbb{C} C
Complex numbers OpenClosedInterval ( a , b ] \left(a, b\right] ( a , b ]
Open-closed interval Infinity ∞ \infty ∞
Positive infinity
Source code for this entry:
Entry(ID("b7d740"),
SymbolDefinition(Arg, Arg(z), "Complex argument"),
Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(Tuple(Element(z, RR), Element(Arg(z), Set(0, Pi))), Tuple(Element(z, CC), Element(Arg(z), OpenClosedInterval(Neg(Pi), Pi))), Tuple(Element(z, Set(Infinity)), Element(Arg(z), Set(0))), Tuple(Element(z, Set(Neg(Infinity))), Element(Arg(z), Set(Pi))))))
Symbol: Re — Re ( z ) \operatorname{Re}(z) R e ( z )
— Real part
Domain Codomain z ∈ R z \in \mathbb{R} z ∈ R
Re ( z ) ∈ R \operatorname{Re}(z) \in \mathbb{R} R e ( z ) ∈ R
z ∈ C z \in \mathbb{C} z ∈ C
Re ( z ) ∈ R \operatorname{Re}(z) \in \mathbb{R} R e ( z ) ∈ R
Table data:
( P , Q ) \left(P, Q\right) ( P , Q )
such that
( P ) ⟹ ( Q ) \left(P\right) \;\implies\; \left(Q\right) ( P ) ⟹ ( Q )
Definitions:
Fungrim symbol Notation Short description Re Re ( z ) \operatorname{Re}(z) R e ( z )
Real part RR R \mathbb{R} R
Real numbers CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("f5e62c"),
SymbolDefinition(Re, Re(z), "Real part"),
Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(Tuple(Element(z, RR), Element(Re(z), RR)), Tuple(Element(z, CC), Element(Re(z), RR)))))
Symbol: Im — Im ( z ) \operatorname{Im}(z) I m ( z )
— Imaginary part
Domain Codomain z ∈ R z \in \mathbb{R} z ∈ R
Im ( z ) ∈ { 0 } \operatorname{Im}(z) \in \left\{0\right\} I m ( z ) ∈ { 0 }
z ∈ C z \in \mathbb{C} z ∈ C
Im ( z ) ∈ R \operatorname{Im}(z) \in \mathbb{R} I m ( z ) ∈ R
Table data:
( P , Q ) \left(P, Q\right) ( P , Q )
such that
( P ) ⟹ ( Q ) \left(P\right) \;\implies\; \left(Q\right) ( P ) ⟹ ( Q )
Definitions:
Fungrim symbol Notation Short description Im Im ( z ) \operatorname{Im}(z) I m ( z )
Imaginary part RR R \mathbb{R} R
Real numbers CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("9086c6"),
SymbolDefinition(Im, Im(z), "Imaginary part"),
Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(Tuple(Element(z, RR), Element(Im(z), Set(0))), Tuple(Element(z, CC), Element(Im(z), RR)))))
Symbol: Conjugate — z ‾ \overline{z} z
— Complex conjugate
Domain Codomain z ∈ R z \in \mathbb{R} z ∈ R
z ‾ ∈ R \overline{z} \in \mathbb{R} z ∈ R
z ∈ C z \in \mathbb{C} z ∈ C
z ‾ ∈ C \overline{z} \in \mathbb{C} z ∈ C
Table data:
( P , Q ) \left(P, Q\right) ( P , Q )
such that
( P ) ⟹ ( Q ) \left(P\right) \;\implies\; \left(Q\right) ( P ) ⟹ ( Q )
Definitions:
Fungrim symbol Notation Short description Conjugate z ‾ \overline{z} z
Complex conjugate RR R \mathbb{R} R
Real numbers CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("da5d5e"),
SymbolDefinition(Conjugate, Conjugate(z), "Complex conjugate"),
Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(Tuple(Element(z, RR), Element(Conjugate(z), RR)), Tuple(Element(z, CC), Element(Conjugate(z), CC)))))
Symbol: Csgn — csgn ( z ) \operatorname{csgn}(z) c s g n ( z )
— Real-valued sign function for complex numbers
Domain Codomain z ∈ C z \in \mathbb{C} z ∈ C
csgn ( z ) ∈ { − 1 , 0 , 1 } \operatorname{csgn}(z) \in \left\{-1, 0, 1\right\} c s g n ( z ) ∈ { − 1 , 0 , 1 }
Table data:
( P , Q ) \left(P, Q\right) ( P , Q )
such that
( P ) ⟹ ( Q ) \left(P\right) \;\implies\; \left(Q\right) ( P ) ⟹ ( Q )
References:
https://www.maplesoft.com/support/help/maple/view.aspx?path=csgn
Definitions:
Fungrim symbol Notation Short description Csgn csgn ( z ) \operatorname{csgn}(z) c s g n ( z )
Real-valued sign function for complex numbers CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("ce8ee4"),
SymbolDefinition(Csgn, Csgn(z), "Real-valued sign function for complex numbers"),
Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(Tuple(Element(z, CC), Element(Csgn(z), Set(-1, 0, 1))))),
References("https://www.maplesoft.com/support/help/maple/view.aspx?path=csgn"))
sgn ( z ) = z ∣ z ∣ \operatorname{sgn}(z) = \frac{z}{\left|z\right|} s g n ( z ) = ∣ z ∣ z
Assumptions: z ∈ C ∖ { 0 } z \in \mathbb{C} \setminus \left\{0\right\} z ∈ C ∖ { 0 }
TeX:
\operatorname{sgn}(z) = \frac{z}{\left|z\right|}
z \in \mathbb{C} \setminus \left\{0\right\} Definitions:
Fungrim symbol Notation Short description Sign sgn ( z ) \operatorname{sgn}(z) s g n ( z )
Sign function Abs ∣ z ∣ \left|z\right| ∣ z ∣
Absolute value CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("26565c"),
Formula(Equal(Sign(z), Div(z, Abs(z)))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
∣ x + y i ∣ = x 2 + y 2 \left|x + y i\right| = \sqrt{{x}^{2} + {y}^{2}} ∣ x + y i ∣ = x 2 + y 2
Assumptions: x ∈ R and y ∈ R x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} x ∈ R a n d y ∈ R
TeX:
\left|x + y i\right| = \sqrt{{x}^{2} + {y}^{2}}
x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} Definitions:
Fungrim symbol Notation Short description Abs ∣ z ∣ \left|z\right| ∣ z ∣
Absolute value ConstI i i i
Imaginary unit Sqrt z \sqrt{z} z
Principal square root Pow a b {a}^{b} a b
Power RR R \mathbb{R} R
Real numbers
Source code for this entry:
Entry(ID("4f0049"),
Formula(Equal(Abs(Add(x, Mul(y, ConstI))), Sqrt(Add(Pow(x, 2), Pow(y, 2))))),
Variables(x, y),
Assumptions(And(Element(x, RR), Element(y, RR))))
arg ( x + y i ) = atan2 ( y , x ) \arg\!\left(x + y i\right) = \operatorname{atan2}\!\left(y, x\right) arg ( x + y i ) = a t a n 2 ( y , x )
Assumptions: x ∈ R and y ∈ R x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} x ∈ R a n d y ∈ R
TeX:
\arg\!\left(x + y i\right) = \operatorname{atan2}\!\left(y, x\right)
x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} Definitions:
Fungrim symbol Notation Short description Arg arg ( z ) \arg(z) arg ( z )
Complex argument ConstI i i i
Imaginary unit Atan2 atan2 ( y , x ) \operatorname{atan2}\!\left(y, x\right) a t a n 2 ( y , x )
Two-argument inverse tangent RR R \mathbb{R} R
Real numbers
Source code for this entry:
Entry(ID("b2a880"),
Formula(Equal(Arg(Add(x, Mul(y, ConstI))), Atan2(y, x))),
Variables(x, y),
Assumptions(And(Element(x, RR), Element(y, RR))))
Re ( x + y i ) = x \operatorname{Re}\!\left(x + y i\right) = x R e ( x + y i ) = x
Assumptions: x ∈ R and y ∈ R x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} x ∈ R a n d y ∈ R
TeX:
\operatorname{Re}\!\left(x + y i\right) = x
x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} Definitions:
Fungrim symbol Notation Short description Re Re ( z ) \operatorname{Re}(z) R e ( z )
Real part ConstI i i i
Imaginary unit RR R \mathbb{R} R
Real numbers
Source code for this entry:
Entry(ID("8e6867"),
Formula(Equal(Re(Add(x, Mul(y, ConstI))), x)),
Variables(x, y),
Assumptions(And(Element(x, RR), Element(y, RR))))
Im ( x + y i ) = y \operatorname{Im}\!\left(x + y i\right) = y I m ( x + y i ) = y
Assumptions: x ∈ R and y ∈ R x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} x ∈ R a n d y ∈ R
TeX:
\operatorname{Im}\!\left(x + y i\right) = y
x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} Definitions:
Fungrim symbol Notation Short description Im Im ( z ) \operatorname{Im}(z) I m ( z )
Imaginary part ConstI i i i
Imaginary unit RR R \mathbb{R} R
Real numbers
Source code for this entry:
Entry(ID("ba6d81"),
Formula(Equal(Im(Add(x, Mul(y, ConstI))), y)),
Variables(x, y),
Assumptions(And(Element(x, RR), Element(y, RR))))
x + y i ‾ = x − y i \overline{x + y i} = x - y i x + y i = x − y i
Assumptions: x ∈ R and y ∈ R x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} x ∈ R a n d y ∈ R
TeX:
\overline{x + y i} = x - y i
x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} Definitions:
Fungrim symbol Notation Short description Conjugate z ‾ \overline{z} z
Complex conjugate ConstI i i i
Imaginary unit RR R \mathbb{R} R
Real numbers
Source code for this entry:
Entry(ID("acda23"),
Formula(Equal(Conjugate(Add(x, Mul(y, ConstI))), Sub(x, Mul(y, ConstI)))),
Variables(x, y),
Assumptions(And(Element(x, RR), Element(y, RR))))
sgn ( x ) = { 1 , x > 0 − 1 , x < 0 0 , x = 0 \operatorname{sgn}(x) = \begin{cases} 1, & x > 0\\-1, & x < 0\\0, & x = 0\\ \end{cases} s g n ( x ) = ⎩ ⎪ ⎨ ⎪ ⎧ 1 , − 1 , 0 , x > 0 x < 0 x = 0
Assumptions: x ∈ R x \in \mathbb{R} x ∈ R
TeX:
\operatorname{sgn}(x) = \begin{cases} 1, & x > 0\\-1, & x < 0\\0, & x = 0\\ \end{cases}
x \in \mathbb{R} Definitions:
Fungrim symbol Notation Short description Sign sgn ( z ) \operatorname{sgn}(z) s g n ( z )
Sign function RR R \mathbb{R} R
Real numbers
Source code for this entry:
Entry(ID("18d335"),
Formula(Equal(Sign(x), Cases(Tuple(1, Greater(x, 0)), Tuple(-1, Less(x, 0)), Tuple(0, Equal(x, 0))))),
Variables(x),
Assumptions(Element(x, RR)))
csgn ( z ) = { sgn ( Im ( z ) ) , Re ( z ) = 0 sgn ( Re ( z ) ) , otherwise \operatorname{csgn}(z) = \begin{cases} \operatorname{sgn}\!\left(\operatorname{Im}(z)\right), & \operatorname{Re}(z) = 0\\\operatorname{sgn}\!\left(\operatorname{Re}(z)\right), & \text{otherwise}\\ \end{cases} c s g n ( z ) = { s g n ( I m ( z ) ) , s g n ( R e ( z ) ) , R e ( z ) = 0 otherwise
Assumptions: z ∈ C z \in \mathbb{C} z ∈ C
TeX:
\operatorname{csgn}(z) = \begin{cases} \operatorname{sgn}\!\left(\operatorname{Im}(z)\right), & \operatorname{Re}(z) = 0\\\operatorname{sgn}\!\left(\operatorname{Re}(z)\right), & \text{otherwise}\\ \end{cases}
z \in \mathbb{C} Definitions:
Fungrim symbol Notation Short description Csgn csgn ( z ) \operatorname{csgn}(z) c s g n ( z )
Real-valued sign function for complex numbers Sign sgn ( z ) \operatorname{sgn}(z) s g n ( z )
Sign function Im Im ( z ) \operatorname{Im}(z) I m ( z )
Imaginary part Re Re ( z ) \operatorname{Re}(z) R e ( z )
Real part CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("59a5d6"),
Formula(Equal(Csgn(z), Cases(Tuple(Sign(Im(z)), Equal(Re(z), 0)), Tuple(Sign(Re(z)), Otherwise)))),
Variables(z),
Assumptions(Element(z, CC)))
csgn ( z ) = z 2 z \operatorname{csgn}(z) = \frac{\sqrt{{z}^{2}}}{z} c s g n ( z ) = z z 2
Assumptions: z ∈ C ∖ { 0 } z \in \mathbb{C} \setminus \left\{0\right\} z ∈ C ∖ { 0 }
TeX:
\operatorname{csgn}(z) = \frac{\sqrt{{z}^{2}}}{z}
z \in \mathbb{C} \setminus \left\{0\right\} Definitions:
Fungrim symbol Notation Short description Csgn csgn ( z ) \operatorname{csgn}(z) c s g n ( z )
Real-valued sign function for complex numbers Sqrt z \sqrt{z} z
Principal square root Pow a b {a}^{b} a b
Power CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("e9465d"),
Formula(Equal(Csgn(z), Div(Sqrt(Pow(z, 2)), z))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
arg ( 1 ) = 0 \arg(1) = 0 arg ( 1 ) = 0
TeX:
\arg(1) = 0 Definitions:
Fungrim symbol Notation Short description Arg arg ( z ) \arg(z) arg ( z )
Complex argument
Source code for this entry:
Entry(ID("c423d2"),
Formula(Equal(Arg(1), 0)))
arg ( i ) = π 2 \arg(i) = \frac{\pi}{2} arg ( i ) = 2 π
TeX:
\arg(i) = \frac{\pi}{2} Definitions:
Fungrim symbol Notation Short description Arg arg ( z ) \arg(z) arg ( z )
Complex argument ConstI i i i
Imaginary unit Pi π \pi π
The constant pi (3.14...)
Source code for this entry:
Entry(ID("735409"),
Formula(Equal(Arg(ConstI), Div(Pi, 2))))
arg ( − i ) = − π 2 \arg\!\left(-i\right) = -\frac{\pi}{2} arg ( − i ) = − 2 π
TeX:
\arg\!\left(-i\right) = -\frac{\pi}{2} Definitions:
Fungrim symbol Notation Short description Arg arg ( z ) \arg(z) arg ( z )
Complex argument ConstI i i i
Imaginary unit Pi π \pi π
The constant pi (3.14...)
Source code for this entry:
Entry(ID("089f85"),
Formula(Equal(Arg(Neg(ConstI)), Neg(Div(Pi, 2)))))
arg ( − 1 ) = π \arg(-1) = \pi arg ( − 1 ) = π
TeX:
\arg(-1) = \pi Definitions:
Fungrim symbol Notation Short description Arg arg ( z ) \arg(z) arg ( z )
Complex argument Pi π \pi π
The constant pi (3.14...)
Source code for this entry:
Entry(ID("a8b41c"),
Formula(Equal(Arg(-1), Pi)))
Re ( z ) = z + z ‾ 2 \operatorname{Re}(z) = \frac{z + \overline{z}}{2} R e ( z ) = 2 z + z
Assumptions: z ∈ C z \in \mathbb{C} z ∈ C
TeX:
\operatorname{Re}(z) = \frac{z + \overline{z}}{2}
z \in \mathbb{C} Definitions:
Fungrim symbol Notation Short description Re Re ( z ) \operatorname{Re}(z) R e ( z )
Real part Conjugate z ‾ \overline{z} z
Complex conjugate CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("3866dc"),
Formula(Equal(Re(z), Div(Add(z, Conjugate(z)), 2))),
Variables(z),
Assumptions(Element(z, CC)))
Im ( z ) = z − z ‾ 2 i \operatorname{Im}(z) = \frac{z - \overline{z}}{2 i} I m ( z ) = 2 i z − z
Assumptions: z ∈ C z \in \mathbb{C} z ∈ C
TeX:
\operatorname{Im}(z) = \frac{z - \overline{z}}{2 i}
z \in \mathbb{C} Definitions:
Fungrim symbol Notation Short description Im Im ( z ) \operatorname{Im}(z) I m ( z )
Imaginary part Conjugate z ‾ \overline{z} z
Complex conjugate ConstI i i i
Imaginary unit CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("f1a29b"),
Formula(Equal(Im(z), Div(Sub(z, Conjugate(z)), Mul(2, ConstI)))),
Variables(z),
Assumptions(Element(z, CC)))
sgn ( z ) = exp ( i arg ( z ) ) \operatorname{sgn}(z) = \exp\!\left(i \arg(z)\right) s g n ( z ) = exp ( i arg ( z ) )
Assumptions: z ∈ C ∖ { 0 } z \in \mathbb{C} \setminus \left\{0\right\} z ∈ C ∖ { 0 }
TeX:
\operatorname{sgn}(z) = \exp\!\left(i \arg(z)\right)
z \in \mathbb{C} \setminus \left\{0\right\} Definitions:
Fungrim symbol Notation Short description Sign sgn ( z ) \operatorname{sgn}(z) s g n ( z )
Sign function Exp e z {e}^{z} e z
Exponential function ConstI i i i
Imaginary unit Arg arg ( z ) \arg(z) arg ( z )
Complex argument CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("54340e"),
Formula(Equal(Sign(z), Exp(Mul(ConstI, Arg(z))))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
arg ( z ) = − i log ( sgn ( z ) ) \arg(z) = -i \log\!\left(\operatorname{sgn}(z)\right) arg ( z ) = − i log ( s g n ( z ) )
Assumptions: z ∈ C ∖ { 0 } z \in \mathbb{C} \setminus \left\{0\right\} z ∈ C ∖ { 0 }
TeX:
\arg(z) = -i \log\!\left(\operatorname{sgn}(z)\right)
z \in \mathbb{C} \setminus \left\{0\right\} Definitions:
Fungrim symbol Notation Short description Arg arg ( z ) \arg(z) arg ( z )
Complex argument ConstI i i i
Imaginary unit Log log ( z ) \log(z) log ( z )
Natural logarithm Sign sgn ( z ) \operatorname{sgn}(z) s g n ( z )
Sign function CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("60772e"),
Formula(Equal(Arg(z), Neg(Mul(ConstI, Log(Sign(z)))))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))
z z ‾ = ∣ z ∣ 2 z \overline{z} = {\left|z\right|}^{2} z z = ∣ z ∣ 2
Assumptions: z ∈ C z \in \mathbb{C} z ∈ C
TeX:
z \overline{z} = {\left|z\right|}^{2}
z \in \mathbb{C} Definitions:
Fungrim symbol Notation Short description Conjugate z ‾ \overline{z} z
Complex conjugate Pow a b {a}^{b} a b
Power Abs ∣ z ∣ \left|z\right| ∣ z ∣
Absolute value CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("bcd22f"),
Formula(Equal(Mul(z, Conjugate(z)), Pow(Abs(z), 2))),
Variables(z),
Assumptions(Element(z, CC)))
arg ( c z ) = arg ( z ) \arg\!\left(c z\right) = \arg(z) arg ( c z ) = arg ( z )
Assumptions: z ∈ C ∖ { 0 } and c ∈ ( 0 , ∞ ) z \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; c \in \left(0, \infty\right) z ∈ C ∖ { 0 } a n d c ∈ ( 0 , ∞ )
TeX:
\arg\!\left(c z\right) = \arg(z)
z \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; c \in \left(0, \infty\right) Definitions:
Fungrim symbol Notation Short description Arg arg ( z ) \arg(z) arg ( z )
Complex argument CC C \mathbb{C} C
Complex numbers OpenInterval ( a , b ) \left(a, b\right) ( a , b )
Open interval Infinity ∞ \infty ∞
Positive infinity
Source code for this entry:
Entry(ID("8cac46"),
Formula(Equal(Arg(Mul(c, z)), Arg(z))),
Variables(z, c),
Assumptions(And(Element(z, SetMinus(CC, Set(0))), Element(c, OpenInterval(0, Infinity)))))
∣ a b ∣ = ∣ a ∣ ∣ b ∣ \left|a b\right| = \left|a\right| \left|b\right| ∣ a b ∣ = ∣ a ∣ ∣ b ∣
Assumptions: a ∈ C and b ∈ C a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} a ∈ C a n d b ∈ C
TeX:
\left|a b\right| = \left|a\right| \left|b\right|
a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} Definitions:
Fungrim symbol Notation Short description Abs ∣ z ∣ \left|z\right| ∣ z ∣
Absolute value CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("98efc1"),
Formula(Equal(Abs(Mul(a, b)), Mul(Abs(a), Abs(b)))),
Variables(a, b),
Assumptions(And(Element(a, CC), Element(b, CC))))
∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ \left|a + b\right| \le \left|a\right| + \left|b\right| ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣
This relation is known as the triangle inequality.
Assumptions: a ∈ C and b ∈ C a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} a ∈ C a n d b ∈ C
TeX:
\left|a + b\right| \le \left|a\right| + \left|b\right|
a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} Definitions:
Fungrim symbol Notation Short description Abs ∣ z ∣ \left|z\right| ∣ z ∣
Absolute value CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("a6e081"),
Formula(LessEqual(Abs(Add(a, b)), Add(Abs(a), Abs(b)))),
Description("This relation is known as the triangle inequality."),
Variables(a, b),
Assumptions(And(Element(a, CC), Element(b, CC))))
∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ \left|\left|a\right| - \left|b\right|\right| \le \left|a - b\right| ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣
This relation is known as the reverse triangle inequality.
Assumptions: a ∈ C and b ∈ C a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} a ∈ C a n d b ∈ C
TeX:
\left|\left|a\right| - \left|b\right|\right| \le \left|a - b\right|
a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} Definitions:
Fungrim symbol Notation Short description Abs ∣ z ∣ \left|z\right| ∣ z ∣
Absolute value CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("48fe10"),
Formula(LessEqual(Abs(Sub(Abs(a), Abs(b))), Abs(Sub(a, b)))),
Description("This relation is known as the reverse triangle inequality."),
Variables(a, b),
Assumptions(And(Element(a, CC), Element(b, CC))))
∣ z ‾ ∣ = ∣ z ∣ \left|\overline{z}\right| = \left|z\right| ∣ z ∣ = ∣ z ∣
Assumptions: z ∈ C z \in \mathbb{C} z ∈ C
TeX:
\left|\overline{z}\right| = \left|z\right|
z \in \mathbb{C} Definitions:
Fungrim symbol Notation Short description Abs ∣ z ∣ \left|z\right| ∣ z ∣
Absolute value Conjugate z ‾ \overline{z} z
Complex conjugate CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("6a894d"),
Formula(Equal(Abs(Conjugate(z)), Abs(z))),
Variables(z),
Assumptions(Element(z, CC)))
∣ Re ( z ) ∣ ≤ ∣ z ∣ \left|\operatorname{Re}(z)\right| \le \left|z\right| ∣ R e ( z ) ∣ ≤ ∣ z ∣
Assumptions: z ∈ C z \in \mathbb{C} z ∈ C
TeX:
\left|\operatorname{Re}(z)\right| \le \left|z\right|
z \in \mathbb{C} Definitions:
Fungrim symbol Notation Short description Abs ∣ z ∣ \left|z\right| ∣ z ∣
Absolute value Re Re ( z ) \operatorname{Re}(z) R e ( z )
Real part CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("ebf8cc"),
Formula(LessEqual(Abs(Re(z)), Abs(z))),
Variables(z),
Assumptions(Element(z, CC)))
∣ Im ( z ) ∣ ≤ ∣ z ∣ \left|\operatorname{Im}(z)\right| \le \left|z\right| ∣ I m ( z ) ∣ ≤ ∣ z ∣
Assumptions: z ∈ C z \in \mathbb{C} z ∈ C
TeX:
\left|\operatorname{Im}(z)\right| \le \left|z\right|
z \in \mathbb{C} Definitions:
Fungrim symbol Notation Short description Abs ∣ z ∣ \left|z\right| ∣ z ∣
Absolute value Im Im ( z ) \operatorname{Im}(z) I m ( z )
Imaginary part CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("fc427b"),
Formula(LessEqual(Abs(Im(z)), Abs(z))),
Variables(z),
Assumptions(Element(z, CC)))
∣ z ∣ ≤ ∣ Re ( z ) ∣ + ∣ Im ( z ) ∣ \left|z\right| \le \left|\operatorname{Re}(z)\right| + \left|\operatorname{Im}(z)\right| ∣ z ∣ ≤ ∣ R e ( z ) ∣ + ∣ I m ( z ) ∣
Assumptions: z ∈ C z \in \mathbb{C} z ∈ C
TeX:
\left|z\right| \le \left|\operatorname{Re}(z)\right| + \left|\operatorname{Im}(z)\right|
z \in \mathbb{C} Definitions:
Fungrim symbol Notation Short description Abs ∣ z ∣ \left|z\right| ∣ z ∣
Absolute value Re Re ( z ) \operatorname{Re}(z) R e ( z )
Real part Im Im ( z ) \operatorname{Im}(z) I m ( z )
Imaginary part CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("12664e"),
Formula(LessEqual(Abs(z), Add(Abs(Re(z)), Abs(Im(z))))),
Variables(z),
Assumptions(Element(z, CC)))
∣ sgn ( z ) ∣ ≤ 1 \left|\operatorname{sgn}(z)\right| \le 1 ∣ s g n ( z ) ∣ ≤ 1
Assumptions: z ∈ C z \in \mathbb{C} z ∈ C
TeX:
\left|\operatorname{sgn}(z)\right| \le 1
z \in \mathbb{C} Definitions:
Fungrim symbol Notation Short description Abs ∣ z ∣ \left|z\right| ∣ z ∣
Absolute value Sign sgn ( z ) \operatorname{sgn}(z) s g n ( z )
Sign function CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("432926"),
Formula(LessEqual(Abs(Sign(z)), 1)),
Variables(z),
Assumptions(Element(z, CC)))
∣ arg ( z ) ∣ ≤ π \left|\arg(z)\right| \le \pi ∣ arg ( z ) ∣ ≤ π
Assumptions: z ∈ C z \in \mathbb{C} z ∈ C
TeX:
\left|\arg(z)\right| \le \pi
z \in \mathbb{C} Definitions:
Fungrim symbol Notation Short description Abs ∣ z ∣ \left|z\right| ∣ z ∣
Absolute value Arg arg ( z ) \arg(z) arg ( z )
Complex argument Pi π \pi π
The constant pi (3.14...) CC C \mathbb{C} C
Complex numbers
Source code for this entry:
Entry(ID("08268d"),
Formula(LessEqual(Abs(Arg(z)), Pi)),
Variables(z),
Assumptions(Element(z, CC)))