Fungrim home page

1.31102877714605990523241979495

From Ordner, a catalog of real numbers in Fungrim.

DecimalExpression [entries]Frequency
1.31102877714605990523241979495EllipticK(-1)     [afb22a]
Re(EllipticK(2))     [630eca]
CarlsonRF(0, 1, 2)     [28237a]
Neg(Im(EllipticK(2)))     [630eca]
Re(CarlsonRF(0, 1, -1))     [f1dd8a]
Neg(Im(CarlsonRF(0, 1, -1)))     [f1dd8a]
Neg(Im(CarlsonRF(0, -1, -2)))     [5c178f]
IncompleteEllipticF(Div(Pi, 4), 2)     [8b4be6]
IncompleteEllipticF(Div(Pi, 2), -1)     [ace837]
Re(IncompleteEllipticF(Div(Pi, 4), 2))     [8b4be6]
Div(Pow(Gamma(Div(1, 4)), 2), Mul(4, Sqrt(Mul(2, Pi))))     [630eca ace837 28237a e54e61 f1dd8a afb22a 0ed5e2 5c178f]
Div(Mul(Sqrt(2), Pow(Gamma(Div(1, 4)), 2)), Mul(8, Sqrt(Pi)))     [8b4be6]
Im(Mul(Div(Pow(Gamma(Div(1, 4)), 2), Mul(4, Sqrt(Mul(2, Pi)))), ConstI))     [5c178f]
Re(Mul(Div(Pow(Gamma(Div(1, 4)), 2), Mul(4, Sqrt(Mul(2, Pi)))), Sub(1, ConstI)))     [f1dd8a 630eca]
Neg(Im(Neg(Mul(Div(Pow(Gamma(Div(1, 4)), 2), Mul(4, Sqrt(Mul(2, Pi)))), ConstI))))     [5c178f]
Neg(Im(Mul(Div(Pow(Gamma(Div(1, 4)), 2), Mul(4, Sqrt(Mul(2, Pi)))), Sub(1, ConstI))))     [f1dd8a 630eca]
9 (#116)

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC