Assumptions:
TeX:
\sum_{n=0}^{\infty} U_{n}\!\left(x\right) \frac{{z}^{n}}{n !} = {e}^{z x} \left(\cosh\!\left(z \sqrt{{x}^{2} - 1}\right) + z x \operatorname{sinc}\!\left(i z \sqrt{{x}^{2} - 1}\right)\right)
x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sum | Sum | |
| ChebyshevU | Chebyshev polynomial of the second kind | |
| Pow | Power | |
| Factorial | Factorial | |
| Infinity | Positive infinity | |
| Exp | Exponential function | |
| Sqrt | Principal square root | |
| Sinc | Sinc function | |
| ConstI | Imaginary unit | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("fff8ff"),
Formula(Equal(Sum(Mul(ChebyshevU(n, x), Div(Pow(z, n), Factorial(n))), For(n, 0, Infinity)), Mul(Exp(Mul(z, x)), Add(Cosh(Mul(z, Sqrt(Sub(Pow(x, 2), 1)))), Mul(Mul(z, x), Sinc(Mul(Mul(ConstI, z), Sqrt(Sub(Pow(x, 2), 1))))))))),
Variables(x, z),
Assumptions(And(Element(x, CC), Element(z, CC))))