Assumptions:
TeX:
L\!\left(s, \chi_{{2}^{n} \, . \, 1}\right) = \left(1 - {2}^{-s}\right) \zeta\!\left(s\right) n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | Dirichlet L-function | |
DirichletCharacter | Dirichlet character | |
Pow | Power | |
RiemannZeta | Riemann zeta function | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("ff8254"), Formula(Equal(DirichletL(s, DirichletCharacter(Pow(2, n), 1)), Mul(Sub(1, Pow(2, Neg(s))), RiemannZeta(s)))), Variables(n, s), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(s, CC))))