Fungrim home page

Fungrim entry: ff613a

I0 ⁣(a,b)=0I_{0}\!\left(a, b\right) = 0
Assumptions:xC  and  aC{0,1,}  and  bC{0,1,}  and  a+b{0,1,}x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; a + b \notin \{0, -1, \ldots\}
I_{0}\!\left(a, b\right) = 0

x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; a + b \notin \{0, -1, \ldots\}
Fungrim symbol Notation Short description
IncompleteBetaRegularizedIx ⁣(a,b)I_{x}\!\left(a, b\right) Regularized incomplete beta function
CCC\mathbb{C} Complex numbers
ZZLessEqualZn\mathbb{Z}_{\le n} Integers less than or equal to n
Source code for this entry:
    Formula(Equal(IncompleteBetaRegularized(0, a, b), 0)),
    Variables(x, a, b),
    Assumptions(And(Element(x, CC), Element(a, SetMinus(CC, ZZLessEqual(0))), Element(b, SetMinus(CC, ZZLessEqual(0))), NotElement(Add(a, b), ZZLessEqual(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC