Assumptions:
TeX:
T_{n}\!\left(x\right) + U_{n - 1}\!\left(x\right) \sqrt{{x}^{2} - 1} = {\left(x + \sqrt{{x}^{2} - 1}\right)}^{n}
n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ChebyshevT | Chebyshev polynomial of the first kind | |
| ChebyshevU | Chebyshev polynomial of the second kind | |
| Sqrt | Principal square root | |
| Pow | Power | |
| ZZ | Integers | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("fdf80d"),
Formula(Equal(Add(ChebyshevT(n, x), Mul(ChebyshevU(Sub(n, 1), x), Sqrt(Sub(Pow(x, 2), 1)))), Pow(Add(x, Sqrt(Sub(Pow(x, 2), 1))), n))),
Variables(n, x),
Assumptions(And(Element(n, ZZ), Element(x, CC))))