Fungrim home page

Fungrim entry: fddfe6

π=n=0116n(48n+128n+418n+518n+6)\pi = \sum_{n=0}^{\infty} \frac{1}{{16}^{n}} \left(\frac{4}{8 n + 1} - \frac{2}{8 n + 4} - \frac{1}{8 n + 5} - \frac{1}{8 n + 6}\right)
References:
  • D. H. Bailey and P. B. Borwein and S. Plouffe (1997). On the rapid computation of various polylogarithmic constants. Mathematics of Computation. vol 66, no 218, p. 903–913. DOI:10.1090/S0025-5718-97-00856-9
TeX:
\pi = \sum_{n=0}^{\infty} \frac{1}{{16}^{n}} \left(\frac{4}{8 n + 1} - \frac{2}{8 n + 4} - \frac{1}{8 n + 5} - \frac{1}{8 n + 6}\right)
Definitions:
Fungrim symbol Notation Short description
Piπ\pi The constant pi (3.14...)
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("fddfe6"),
    Formula(Equal(Pi, Sum(Mul(Div(1, Pow(16, n)), Sub(Sub(Sub(Div(4, Add(Mul(8, n), 1)), Div(2, Add(Mul(8, n), 4))), Div(1, Add(Mul(8, n), 5))), Div(1, Add(Mul(8, n), 6)))), For(n, 0, Infinity)))),
    References("D. H. Bailey and P. B. Borwein and S. Plouffe (1997). On the rapid computation of various polylogarithmic constants. Mathematics of Computation. vol 66, no 218, p. 903–913. DOI:10.1090/S0025-5718-97-00856-9"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC