Assumptions:
TeX:
F_{n} = \frac{2}{\sqrt{5}} \begin{cases} \sinh\!\left(n u\right), & n \text{ even}\\\cosh\!\left(n u\right), & n \text{ odd}\\ \end{cases}\; \text{ where } u = \log(\varphi)
n \in \mathbb{Z}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Fibonacci | Fibonacci number | |
| Sqrt | Principal square root | |
| Log | Natural logarithm | |
| GoldenRatio | The golden ratio (1.618...) | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("fd732d"),
Formula(Equal(Fibonacci(n), Mul(Div(2, Sqrt(5)), Where(Cases(Tuple(Sinh(Mul(n, u)), Even(n)), Tuple(Cosh(Mul(n, u)), Odd(n))), Equal(u, Log(GoldenRatio)))))),
Variables(n),
Assumptions(Element(n, ZZ)))