Assumptions:
TeX:
\lambda_{n} = \frac{1}{n !} \left[ \frac{d^{n}}{{d s}^{n}} \log\!\left(2 \xi\!\left(\frac{s}{s - 1}\right)\right) \right]_{s = 0}
n \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| KeiperLiLambda | Keiper-Li coefficient | |
| Factorial | Factorial | |
| ComplexDerivative | Complex derivative | |
| Log | Natural logarithm | |
| RiemannXi | Riemann xi-function | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("fcab61"),
Formula(Equal(KeiperLiLambda(n), Mul(Div(1, Factorial(n)), ComplexDerivative(Log(Mul(2, RiemannXi(Div(s, Sub(s, 1))))), For(s, 0, n))))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(0))))