Fungrim home page

Fungrim entry: fcab61

λn=1n![dndsnlog ⁣(2ξ ⁣(ss1))]s=0\lambda_{n} = \frac{1}{n !} \left[ \frac{d^{n}}{{d s}^{n}} \log\!\left(2 \xi\!\left(\frac{s}{s - 1}\right)\right) \right]_{s = 0}
Assumptions:nZ0n \in \mathbb{Z}_{\ge 0}
TeX:
\lambda_{n} = \frac{1}{n !} \left[ \frac{d^{n}}{{d s}^{n}} \log\!\left(2 \xi\!\left(\frac{s}{s - 1}\right)\right) \right]_{s = 0}

n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol Notation Short description
KeiperLiLambdaλn\lambda_{n} Keiper-Li coefficient
Factorialn!n ! Factorial
ComplexDerivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Complex derivative
Loglog(z)\log(z) Natural logarithm
RiemannXiξ(s)\xi(s) Riemann xi-function
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("fcab61"),
    Formula(Equal(KeiperLiLambda(n), Mul(Div(1, Factorial(n)), ComplexDerivative(Log(Mul(2, RiemannXi(Div(s, Sub(s, 1))))), For(s, 0, n))))),
    Variables(n),
    Assumptions(Element(n, ZZGreaterEqual(0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC