Assumptions:
TeX:
\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \left(a {z}^{2} + b z + c\right) = \left\{\frac{-b + \sqrt{{b}^{2} - 4 a c}}{2 a}, \frac{-b - \sqrt{{b}^{2} - 4 a c}}{2 a}\right\} a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, c \in \mathbb{C} \,\mathbin{\operatorname{and}}\, a \ne 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
CC | Complex numbers | |
Sqrt | Principal square root |
Source code for this entry:
Entry(ID("fc2582"), Formula(Equal(Zeros(Add(Add(Mul(a, Pow(z, 2)), Mul(b, z)), c), z, Element(z, CC)), Set(Div(Add(Neg(b), Sqrt(Sub(Pow(b, 2), Mul(Mul(4, a), c)))), Mul(2, a)), Div(Sub(Neg(b), Sqrt(Sub(Pow(b, 2), Mul(Mul(4, a), c)))), Mul(2, a))))), Variables(a, b, c), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, CC), Unequal(a, 0))))