Fungrim home page

Fungrim entry: fc2582

zeroszC[az2+bz+c]={b+b24ac2a,bb24ac2a}\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \left[a {z}^{2} + b z + c\right] = \left\{\frac{-b + \sqrt{{b}^{2} - 4 a c}}{2 a}, \frac{-b - \sqrt{{b}^{2} - 4 a c}}{2 a}\right\}
Assumptions:aC  and  bC  and  cC  and  a0a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \ne 0
TeX:
\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \left[a {z}^{2} + b z + c\right] = \left\{\frac{-b + \sqrt{{b}^{2} - 4 a c}}{2 a}, \frac{-b - \sqrt{{b}^{2} - 4 a c}}{2 a}\right\}

a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \ne 0
Definitions:
Fungrim symbol Notation Short description
ZeroszerosxSf(x)\mathop{\operatorname{zeros}\,}\limits_{x \in S} f(x) Zeros (roots) of function
Powab{a}^{b} Power
CCC\mathbb{C} Complex numbers
Sqrtz\sqrt{z} Principal square root
Source code for this entry:
Entry(ID("fc2582"),
    Formula(Equal(Zeros(Add(Add(Mul(a, Pow(z, 2)), Mul(b, z)), c), ForElement(z, CC)), Set(Div(Add(Neg(b), Sqrt(Sub(Pow(b, 2), Mul(Mul(4, a), c)))), Mul(2, a)), Div(Sub(Neg(b), Sqrt(Sub(Pow(b, 2), Mul(Mul(4, a), c)))), Mul(2, a))))),
    Variables(a, b, c),
    Assumptions(And(Element(a, CC), Element(b, CC), Element(c, CC), NotEqual(a, 0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC