Assumptions:
TeX:
\operatorname{lcm}\!\left(r s, c\right) = \frac{\operatorname{lcm}\!\left(r, c\right) \operatorname{lcm}\!\left(s, c\right)}{\left|c\right|} r \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, s \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, c \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, \gcd\!\left(r, s\right) = 1 \,\mathbin{\operatorname{and}}\, c \ne 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LCM | Least common multiple | |
Abs | Absolute value | |
ZZ | Integers | |
GCD | Greatest common divisor |
Source code for this entry:
Entry(ID("fbe121"), Formula(Equal(LCM(Mul(r, s), c), Div(Mul(LCM(r, c), LCM(s, c)), Abs(c)))), Variables(r, s, c), Assumptions(And(Element(r, ZZ), Element(s, ZZ), Element(c, ZZ), Equal(GCD(r, s), 1), Unequal(c, 0))))