Assumptions:
TeX:
p\!\left(n\right) = \frac{2 \pi}{{\left(24 n - 1\right)}^{3 / 4}} \sum_{k=1}^{\infty} \frac{A\!\left(n, k\right)}{k} I_{3 / 2}\!\left(\frac{\pi}{k} \sqrt{\frac{2}{3} \left(n - \frac{1}{24}\right)}\right)
n \in \mathbb{Z}_{\ge 1}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| PartitionsP | Integer partition function | |
| ConstPi | The constant pi (3.14...) | |
| Pow | Power | |
| HardyRamanujanA | Exponential sum in the Hardy-Ramanujan-Rademacher formula | |
| BesselI | Modified Bessel function of the first kind | |
| Sqrt | Principal square root | |
| Infinity | Positive infinity | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("fb7a63"),
Formula(Equal(PartitionsP(n), Mul(Div(Mul(2, ConstPi), Pow(Sub(Mul(24, n), 1), Div(3, 4))), Sum(Mul(Div(HardyRamanujanA(n, k), k), BesselI(Div(3, 2), Mul(Div(ConstPi, k), Sqrt(Mul(Div(2, 3), Sub(n, Div(1, 24))))))), Tuple(k, 1, Infinity))))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(1))))