Assumptions:
TeX:
{\operatorname{erf}}^{(n)}(z) = \frac{2}{\sqrt{\pi}} {\left(-1\right)}^{n + 1} H_{n - 1}\!\left(z\right) {e}^{-{z}^{2}}
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}_{\ge 1}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Derivative | Derivative | |
| Erf | Error function | |
| Sqrt | Principal square root | |
| ConstPi | The constant pi (3.14...) | |
| Pow | Power | |
| HermitePolynomial | Hermite polynomial | |
| Exp | Exponential function | |
| CC | Complex numbers | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("fae9d3"),
Formula(Equal(Derivative(Erf(z), Tuple(z, z, n)), Mul(Mul(Mul(Div(2, Sqrt(ConstPi)), Pow(-1, Add(n, 1))), HermitePolynomial(Sub(n, 1), z)), Exp(Neg(Pow(z, 2)))))),
Variables(z, n),
Assumptions(And(Element(z, CC), Element(n, ZZGreaterEqual(1)))))