Assumptions:
TeX:
{\operatorname{erf}}^{(n)}(z) = \frac{2}{\sqrt{\pi}} {\left(-1\right)}^{n + 1} H_{n - 1}\!\left(z\right) {e}^{-{z}^{2}} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
Erf | Error function | |
Sqrt | Principal square root | |
Pi | The constant pi (3.14...) | |
Pow | Power | |
HermitePolynomial | Hermite polynomial | |
Exp | Exponential function | |
CC | Complex numbers | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("fae9d3"), Formula(Equal(ComplexDerivative(Erf(z), For(z, z, n)), Mul(Mul(Mul(Div(2, Sqrt(Pi)), Pow(-1, Add(n, 1))), HermitePolynomial(Sub(n, 1), z)), Exp(Neg(Pow(z, 2)))))), Variables(z, n), Assumptions(And(Element(z, CC), Element(n, ZZGreaterEqual(1)))))