Fungrim home page

Fungrim entry: fa8666

E(m)=011mx21x2dxE(m) = \int_{0}^{1} \frac{\sqrt{1 - m {x}^{2}}}{\sqrt{1 - {x}^{2}}} \, dx
Assumptions:mCm \in \mathbb{C}
TeX:
E(m) = \int_{0}^{1} \frac{\sqrt{1 - m {x}^{2}}}{\sqrt{1 - {x}^{2}}} \, dx

m \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
EllipticEE(m)E(m) Legendre complete elliptic integral of the second kind
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Sqrtz\sqrt{z} Principal square root
Powab{a}^{b} Power
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("fa8666"),
    Formula(Equal(EllipticE(m), Integral(Div(Sqrt(Sub(1, Mul(m, Pow(x, 2)))), Sqrt(Sub(1, Pow(x, 2)))), For(x, 0, 1)))),
    Variables(m),
    Assumptions(Element(m, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC