Fungrim home page

Fungrim entry: fa30c7

atan ⁣(x+y)atan ⁣(x)y1+(max ⁣(0,xy))2\left|\operatorname{atan}\!\left(x + y\right) - \operatorname{atan}\!\left(x\right)\right| \le \frac{\left|y\right|}{1 + {\left(\max\!\left(0, \left|x\right| - \left|y\right|\right)\right)}^{2}}
Assumptions:xRandyRx \in \mathbb{R} \,\mathbin{\operatorname{and}}\, y \in \mathbb{R}
TeX:
\left|\operatorname{atan}\!\left(x + y\right) - \operatorname{atan}\!\left(x\right)\right| \le \frac{\left|y\right|}{1 + {\left(\max\!\left(0, \left|x\right| - \left|y\right|\right)\right)}^{2}}

x \in \mathbb{R} \,\mathbin{\operatorname{and}}\, y \in \mathbb{R}
Definitions:
Fungrim symbol Notation Short description
Absz\left|z\right| Absolute value
Atanatan ⁣(z)\operatorname{atan}\!\left(z\right) Inverse tangent
Powab{a}^{b} Power
RRR\mathbb{R} Real numbers
Source code for this entry:
Entry(ID("fa30c7"),
    Formula(LessEqual(Abs(Sub(Atan(Add(x, y)), Atan(x))), Div(Abs(y), Add(1, Pow(Max(0, Sub(Abs(x), Abs(y))), 2))))),
    Variables(x, y),
    Assumptions(And(Element(x, RR), Element(y, RR))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC