Assumptions:
TeX:
\sqrt{{e}^{i \theta} \infty} = {e}^{i \theta / 2} \infty \theta \in \left(-\pi, \pi\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sqrt | Principal square root | |
Exp | Exponential function | |
ConstI | Imaginary unit | |
Infinity | Positive infinity | |
OpenClosedInterval | Open-closed interval | |
Pi | The constant pi (3.14...) |
Source code for this entry:
Entry(ID("f9f31d"), Formula(Equal(Sqrt(Mul(Exp(Mul(ConstI, theta)), Infinity)), Mul(Exp(Div(Mul(ConstI, theta), 2)), Infinity))), Variables(theta), Assumptions(Element(theta, OpenClosedInterval(Neg(Pi), Pi))))