Assumptions:
TeX:
\sum_{k=0}^{n} {\left(-1\right)}^{k + 1} {n \choose k} F_{k} = F_{n}
n \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sum | Sum | |
| Pow | Power | |
| Binomial | Binomial coefficient | |
| Fibonacci | Fibonacci number | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("f95561"),
Formula(Equal(Sum(Mul(Mul(Pow(-1, Add(k, 1)), Binomial(n, k)), Fibonacci(k)), For(k, 0, n)), Fibonacci(n))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(0))))