Assumptions:
TeX:
\psi\!\left(z\right) = -\gamma + \int_{0}^{\infty} \frac{{e}^{-t} - {e}^{-z t}}{1 - {e}^{-t}} \, dt z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DigammaFunction | Digamma function | |
ConstGamma | The constant gamma (0.577...) | |
Integral | Integral | |
Exp | Exponential function | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("f946a5"), Formula(Equal(DigammaFunction(z), Add(Neg(ConstGamma), Integral(Div(Sub(Exp(Neg(t)), Exp(Neg(Mul(z, t)))), Sub(1, Exp(Neg(t)))), For(t, 0, Infinity))))), Variables(z), Assumptions(And(Element(z, CC), Greater(Re(z), 0))))