Assumptions:
TeX:
\int_{z}^{\infty} {e}^{-a {x}^{2} + b} \, dx = \frac{{e}^{b}}{2} \sqrt{\frac{\pi}{a}} \operatorname{erfc}\!\left(\sqrt{a} z\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Integral | Integral | |
Exp | Exponential function | |
Pow | Power | |
Infinity | Positive infinity | |
Sqrt | Principal square root | |
Pi | The constant pi (3.14...) | |
Erfc | Complementary error function | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("f8de2e"), Formula(Equal(Integral(Exp(Add(Neg(Mul(a, Pow(x, 2))), b)), For(x, z, Infinity)), Mul(Mul(Div(Exp(b), 2), Sqrt(Div(Pi, a))), Erfc(Mul(Sqrt(a), z))))), Variables(a, b, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), Greater(Re(a), 0))))