Assumptions:
TeX:
\,{}_1{\textbf F}_1\!\left(a, b, z\right) = \frac{{\left(-z\right)}^{-a}}{\Gamma\!\left(b - a\right)} U^{*}\!\left(a, b, z\right) + \frac{{z}^{a - b} {e}^{z}}{\Gamma(a)} U^{*}\!\left(b - a, b, -z\right)
a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Hypergeometric1F1Regularized | Regularized Kummer confluent hypergeometric function | |
| Pow | Power | |
| Gamma | Gamma function | |
| HypergeometricUStar | Scaled Tricomi confluent hypergeometric function | |
| Exp | Exponential function | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("f7f84e"),
Formula(Equal(Hypergeometric1F1Regularized(a, b, z), Add(Mul(Div(Pow(Neg(z), Neg(a)), Gamma(Sub(b, a))), HypergeometricUStar(a, b, z)), Mul(Div(Mul(Pow(z, Sub(a, b)), Exp(z)), Gamma(a)), HypergeometricUStar(Sub(b, a), b, Neg(z)))))),
Variables(a, b, z),
Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), NotEqual(z, 0))))