Fungrim home page

Fungrim entry: f7ce46

Symbol: Zeros zerosxSf(x)\mathop{\operatorname{zeros}\,}\limits_{x \in S} f(x) Zeros (roots) of function
Zeros(f(x), ForElement(x, S)), rendered zerosxSf(x)\mathop{\operatorname{zeros}\,}\limits_{x \in S} f(x), represents the set of values xSx \in S satisfying f(x)=0f(x) = 0.
Zeros(f(x), ForElement(x, S), P(x)), rendered zerosxS,P(x)f(x)\mathop{\operatorname{zeros}\,}\limits_{x \in S,\,P(x)} f(x), represents the set of values xSx \in S satisfying P(x)P(x) and f(x)=0f(x) = 0.
Zeros(f(x), For(x), P(x)), rendered zerosP(x)f(x)\mathop{\operatorname{zeros}\,}\limits_{P(x)} f(x), represents the set of values xx satisfying P(x)P(x) and f(x)=0f(x) = 0.
Zeros(f(x, y), For(Tuple(x, y)), P(x, y)), rendered zerosP(x,y)f ⁣(x,y)\mathop{\operatorname{zeros}\,}\limits_{P\left(x, y\right)} f\!\left(x, y\right), represents the set of tuples (x,y)\left(x, y\right) satisfying P ⁣(x,y)P\!\left(x, y\right) and f ⁣(x,y)=0f\!\left(x, y\right) = 0, and similarly for any number n2n \ge 2 of variables.
The special expression For(x) or ForElement(x, S) declares x as a locally bound variable within the scope of the arguments to this operator. If For(x) is used instead of ForElement(x, S), the corresponding predicate P(x)P(x) must define the domain of xx unambiguously; that is, it must include a statement such as xSx \in S where SS is a known set. Similarly, For(Tuple(x, y)), For(Tuple(x, y, z)), etc. defines multiple locally bound variables which must be accompanied by a multivariate predicate P ⁣(x,y)P\!\left(x, y\right), P ⁣(x,y,z)P\!\left(x, y, z\right), etc.
Definitions:
Fungrim symbol Notation Short description
ZeroszerosxSf(x)\mathop{\operatorname{zeros}\,}\limits_{x \in S} f(x) Zeros (roots) of function
Source code for this entry:
Entry(ID("f7ce46"),
    SymbolDefinition(Zeros, Zeros(f(x), ForElement(x, S)), "Zeros (roots) of function"),
    Description(SourceForm(Zeros(f(x), ForElement(x, S))), ", rendered", Zeros(f(x), ForElement(x, S)), ", represents the set of values", Element(x, S), "satisfying", Equal(f(x), 0), "."),
    Description(SourceForm(Zeros(f(x), ForElement(x, S), P(x))), ", rendered", Zeros(f(x), ForElement(x, S), P(x)), ", represents the set of values", Element(x, S), "satisfying", P(x), "and", Equal(f(x), 0), "."),
    Description(SourceForm(Zeros(f(x), For(x), P(x))), ", rendered", Zeros(f(x), For(x), P(x)), ", represents the set of values", x, "satisfying", P(x), "and", Equal(f(x), 0), "."),
    Description(SourceForm(Zeros(f(x, y), For(Tuple(x, y)), P(x, y))), ", rendered", Zeros(f(x, y), For(Tuple(x, y)), P(x, y)), ", represents the set of tuples", Tuple(x, y), "satisfying", P(x, y), "and", Equal(f(x, y), 0), ", and similarly for any number", GreaterEqual(n, 2), "of variables."),
    Description("The special expression", SourceForm(For(x)), "or", SourceForm(ForElement(x, S)), "declares", SourceForm(x), "as a locally bound variable within the scope of the arguments to this operator. ", "If", SourceForm(For(x)), "is used instead of", SourceForm(ForElement(x, S)), ", the corresponding predicate", P(x), "must define the domain of", x, "unambiguously; that is, it must include a statement such as", Element(x, S), "where", S, "is a known set. Similarly,", SourceForm(For(Tuple(x, y))), ", ", SourceForm(For(Tuple(x, y, z))), ", etc.", "defines multiple locally bound variables which must be accompanied by a multivariate predicate", P(x, y), ", ", P(x, y, z), ", etc."))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC