Fungrim home page

Fungrim entry: f61927

Tn ⁣(xy)Tn ⁣(x)Tn ⁣(y)T_{n}\!\left(x y\right) \le T_{n}\!\left(x\right) T_{n}\!\left(y\right)
Assumptions:nZ  and  x[1,)  and  y[1,)n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \left[1, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left[1, \infty\right)
References:
  • V. V. Prasolov, Polynomials, Springer, 2004, ISBN 978-3-642-03980-5. Theorem 3.14.11.
  • R. Askey, An inequality for Tchebycheff polynomials and extensions, Journal of Approximation Theory, 1975, Volume 14, pp 1-11
TeX:
T_{n}\!\left(x y\right) \le T_{n}\!\left(x\right) T_{n}\!\left(y\right)

n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \left[1, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left[1, \infty\right)
Definitions:
Fungrim symbol Notation Short description
ChebyshevTTn ⁣(x)T_{n}\!\left(x\right) Chebyshev polynomial of the first kind
ZZZ\mathbb{Z} Integers
ClosedOpenInterval[a,b)\left[a, b\right) Closed-open interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("f61927"),
    Formula(LessEqual(ChebyshevT(n, Mul(x, y)), Mul(ChebyshevT(n, x), ChebyshevT(n, y)))),
    Variables(n, x, y),
    Assumptions(And(Element(n, ZZ), Element(x, ClosedOpenInterval(1, Infinity)), Element(y, ClosedOpenInterval(1, Infinity)))),
    References("V. V. Prasolov, Polynomials, Springer, 2004, ISBN 978-3-642-03980-5. Theorem 3.14.11.", "R. Askey, An inequality for Tchebycheff polynomials and extensions, Journal of Approximation Theory, 1975, Volume 14, pp 1-11"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC