Assumptions:
References:
- V. V. Prasolov, Polynomials, Springer, 2004, ISBN 978-3-642-03980-5. Theorem 3.14.11.
- R. Askey, An inequality for Tchebycheff polynomials and extensions, Journal of Approximation Theory, 1975, Volume 14, pp 1-11
TeX:
T_{n}\!\left(x y\right) \le T_{n}\!\left(x\right) T_{n}\!\left(y\right)
n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \left[1, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left[1, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ChebyshevT | Chebyshev polynomial of the first kind | |
| ZZ | Integers | |
| ClosedOpenInterval | Closed-open interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("f61927"),
Formula(LessEqual(ChebyshevT(n, Mul(x, y)), Mul(ChebyshevT(n, x), ChebyshevT(n, y)))),
Variables(n, x, y),
Assumptions(And(Element(n, ZZ), Element(x, ClosedOpenInterval(1, Infinity)), Element(y, ClosedOpenInterval(1, Infinity)))),
References("V. V. Prasolov, Polynomials, Springer, 2004, ISBN 978-3-642-03980-5. Theorem 3.14.11.", "R. Askey, An inequality for Tchebycheff polynomials and extensions, Journal of Approximation Theory, 1975, Volume 14, pp 1-11"))