Assumptions:
TeX:
U_{n}\!\left(x\right) = {2}^{n} \prod_{k=1}^{n} \left(x - \cos\!\left(\frac{k}{n + 1} \pi\right)\right) n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Chebyshev polynomial of the second kind | |
Pow | Power | |
Product | Product | |
Cos | Cosine | |
Pi | The constant pi (3.14...) | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("f5fa23"), Formula(Equal(ChebyshevU(n, x), Mul(Pow(2, n), Product(Parentheses(Sub(x, Cos(Mul(Div(k, Add(n, 1)), Pi)))), For(k, 1, n))))), Variables(n, x), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(x, CC))))