Fungrim home page

Fungrim entry: f5e153

Symbol: PartitionsP p(n)p(n) Integer partition function
p(n)p(n) denotes the number of ways the integer nn can be written as a sum of positive integers.
Domain Codomain
nZn \in \mathbb{Z} p(n)Z0p(n) \in \mathbb{Z}_{\ge 0}
nZ0n \in \mathbb{Z}_{\ge 0} p(n)Z1p(n) \in \mathbb{Z}_{\ge 1}
Table data: (P,Q)\left(P, Q\right) such that (P)        (Q)\left(P\right) \;\implies\; \left(Q\right)
Definitions:
Fungrim symbol Notation Short description
PartitionsPp(n)p(n) Integer partition function
ZZZ\mathbb{Z} Integers
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("f5e153"),
    SymbolDefinition(PartitionsP, PartitionsP(n), "Integer partition function"),
    Description(PartitionsP(n), "denotes the number of ways the integer", n, "can be written as a sum of positive integers."),
    Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(Tuple(Element(n, ZZ), Element(PartitionsP(n), ZZGreaterEqual(0))), Tuple(Element(n, ZZGreaterEqual(0)), Element(PartitionsP(n), ZZGreaterEqual(1))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC