Assumptions:
TeX:
P_{n}\!\left(z\right) = {2 n \choose n} {\left(\frac{z}{2}\right)}^{n} \,{}_2F_1\!\left(-\frac{n}{2}, \frac{1 - n}{2}, \frac{1}{2} - n, \frac{1}{{z}^{2}}\right) n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LegendrePolynomial | Legendre polynomial | |
Binomial | Binomial coefficient | |
Pow | Power | |
Hypergeometric2F1 | Gauss hypergeometric function | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("f55f0a"), Formula(Equal(LegendrePolynomial(n, z), Mul(Mul(Binomial(Mul(2, n), n), Pow(Div(z, 2), n)), Hypergeometric2F1(Neg(Div(n, 2)), Div(Sub(1, n), 2), Sub(Div(1, 2), n), Div(1, Pow(z, 2)))))), Variables(n, z), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(z, SetMinus(CC, Set(0))))))