Fungrim home page

Fungrim entry: f50c74

G(n)={0,n<01,n=012(log ⁣(2π)1),n=1G(n)(12log ⁣(2π)+(n1)(Hn2γ1)+12),n2G'(n) = \begin{cases} 0, & n < 0\\1, & n = 0\\\frac{1}{2} \left(\log\!\left(2 \pi\right) - 1\right), & n = 1\\G(n) \left(\frac{1}{2} \log\!\left(2 \pi\right) + \left(n - 1\right) \left(H_{n - 2} - \gamma - 1\right) + \frac{1}{2}\right), & n \ge 2\\ \end{cases}
Assumptions:nZn \in \mathbb{Z}
TeX:
G'(n) = \begin{cases} 0, & n < 0\\1, & n = 0\\\frac{1}{2} \left(\log\!\left(2 \pi\right) - 1\right), & n = 1\\G(n) \left(\frac{1}{2} \log\!\left(2 \pi\right) + \left(n - 1\right) \left(H_{n - 2} - \gamma - 1\right) + \frac{1}{2}\right), & n \ge 2\\ \end{cases}

n \in \mathbb{Z}
Definitions:
Fungrim symbol Notation Short description
ComplexDerivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Complex derivative
BarnesGG(z)G(z) Barnes G-function
Loglog(z)\log(z) Natural logarithm
Piπ\pi The constant pi (3.14...)
ConstGammaγ\gamma The constant gamma (0.577...)
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("f50c74"),
    Formula(Equal(ComplexDerivative(BarnesG(z), For(z, n)), Cases(Tuple(0, Less(n, 0)), Tuple(1, Equal(n, 0)), Tuple(Mul(Div(1, 2), Sub(Log(Mul(2, Pi)), 1)), Equal(n, 1)), Tuple(Mul(BarnesG(n), Add(Add(Mul(Div(1, 2), Log(Mul(2, Pi))), Mul(Sub(n, 1), Sub(Sub(HarmonicNumber(Sub(n, 2)), ConstGamma), 1))), Div(1, 2))), GreaterEqual(n, 2))))),
    Variables(n),
    Assumptions(Element(n, ZZ)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC