Assumptions:
TeX:
G'(n) = \begin{cases} 0, & n < 0\\1, & n = 0\\\frac{1}{2} \left(\log\!\left(2 \pi\right) - 1\right), & n = 1\\G(n) \left(\frac{1}{2} \log\!\left(2 \pi\right) + \left(n - 1\right) \left(H_{n - 2} - \gamma - 1\right) + \frac{1}{2}\right), & n \ge 2\\ \end{cases}
n \in \mathbb{Z}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ComplexDerivative | Complex derivative | |
| BarnesG | Barnes G-function | |
| Log | Natural logarithm | |
| Pi | The constant pi (3.14...) | |
| ConstGamma | The constant gamma (0.577...) | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("f50c74"),
Formula(Equal(ComplexDerivative(BarnesG(z), For(z, n)), Cases(Tuple(0, Less(n, 0)), Tuple(1, Equal(n, 0)), Tuple(Mul(Div(1, 2), Sub(Log(Mul(2, Pi)), 1)), Equal(n, 1)), Tuple(Mul(BarnesG(n), Add(Add(Mul(Div(1, 2), Log(Mul(2, Pi))), Mul(Sub(n, 1), Sub(Sub(HarmonicNumber(Sub(n, 2)), ConstGamma), 1))), Div(1, 2))), GreaterEqual(n, 2))))),
Variables(n),
Assumptions(Element(n, ZZ)))