Fungrim home page

Fungrim entry: f4fbb8

Symbol: ArgMinUnique arg min*xSf(x)\mathop{\operatorname{arg\,min*}}\limits_{x \in S} f(x) Unique location of minimum value
ArgMinUnique(f(x), ForElement(x, S)), rendered arg min*xSf(x)\mathop{\operatorname{arg\,min*}}\limits_{x \in S} f(x), represents the unique value xSx \in S such that f(x)=minsSf(s)f(x) = \mathop{\min}\limits_{s \in S} f(s). This operation is only defined if such a unique value exists.
ArgMinUnique(f(x), ForElement(x, S), P(x)), rendered arg min*xS,P(x)f(x)\mathop{\operatorname{arg\,min*}}\limits_{x \in S,\,P(x)} f(x), represents the unique value xSx \in S satisfying P(x)P(x) and such that f(x)=minsSf(s)f(x) = \mathop{\min}\limits_{s \in S} f(s). This operation is only defined if such a unique value exists.
ArgMinUnique(f(x, y), For(Tuple(x, y)), P(x, y)) represents the unique tuple (x,y)\left(x, y\right) satisfying P ⁣(x,y)P\!\left(x, y\right) such that f ⁣(x,y)=minP(s,t)f ⁣(s,t)f\!\left(x, y\right) = \mathop{\min}\limits_{P\left(s, t\right)} f\!\left(s, t\right), and similarly for any number n2n \ge 2 of variables.
The special expression For(x) or ForElement(x, S) declares x as a locally bound variable within the scope of the arguments to this operator. If For(x) is used instead of ForElement(x, S), the corresponding predicate P(x)P(x) must define the domain of xx unambiguously; that is, it must include a statement such as xSx \in S where SS is a known set. Similarly, For(Tuple(x, y)), For(Tuple(x, y, z)), etc. defines multiple locally bound variables which must be accompanied by a multivariate predicate P ⁣(x,y)P\!\left(x, y\right), P ⁣(x,y,z)P\!\left(x, y, z\right), etc.
Definitions:
Fungrim symbol Notation Short description
ArgMinUniquearg min*xSf(x)\mathop{\operatorname{arg\,min*}}\limits_{x \in S} f(x) Unique location of minimum value
MinimumminxSf(x)\mathop{\min}\limits_{x \in S} f(x) Minimum value of a set or function
Source code for this entry:
Entry(ID("f4fbb8"),
    SymbolDefinition(ArgMinUnique, ArgMinUnique(f(x), ForElement(x, S)), "Unique location of minimum value"),
    Description(SourceForm(ArgMinUnique(f(x), ForElement(x, S))), ", rendered", ArgMinUnique(f(x), ForElement(x, S)), ", ", "represents the unique value", Element(x, S), "such that", Equal(f(x), Minimum(f(s), ForElement(s, S))), ". This operation is only defined if such a unique value exists."),
    Description(SourceForm(ArgMinUnique(f(x), ForElement(x, S), P(x))), ", rendered", ArgMinUnique(f(x), ForElement(x, S), P(x)), ", ", "represents the unique value", Element(x, S), "satisfying", P(x), "and", "such that", Equal(f(x), Minimum(f(s), ForElement(s, S))), ". This operation is only defined if such a unique value exists."),
    Description(SourceForm(ArgMinUnique(f(x, y), For(Tuple(x, y)), P(x, y))), "represents the unique tuple", Tuple(x, y), "satisfying", P(x, y), "such that", Equal(f(x, y), Minimum(f(s, t), For(Tuple(s, t)), P(s, t))), ", and similarly for any number", GreaterEqual(n, 2), "of variables."),
    Description("The special expression", SourceForm(For(x)), "or", SourceForm(ForElement(x, S)), "declares", SourceForm(x), "as a locally bound variable within the scope of the arguments to this operator. ", "If", SourceForm(For(x)), "is used instead of", SourceForm(ForElement(x, S)), ", the corresponding predicate", P(x), "must define the domain of", x, "unambiguously; that is, it must include a statement such as", Element(x, S), "where", S, "is a known set. Similarly,", SourceForm(For(Tuple(x, y))), ", ", SourceForm(For(Tuple(x, y, z))), ", etc.", "defines multiple locally bound variables which must be accompanied by a multivariate predicate", P(x, y), ", ", P(x, y, z), ", etc."))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC