Fungrim home page

Fungrim entry: f4e249

Bn=2n!πeIm ⁣(0πeeeixsin ⁣(nx)dx)B_{n} = \frac{2 n !}{\pi e} \operatorname{Im}\!\left(\int_{0}^{\pi} {e}^{{e}^{{e}^{i x}}} \sin\!\left(n x\right) \, dx\right)
Assumptions:nZ1n \in \mathbb{Z}_{\ge 1}
References:
  • https://arxiv.org/abs/0708.3301
TeX:
B_{n} = \frac{2 n !}{\pi e} \operatorname{Im}\!\left(\int_{0}^{\pi} {e}^{{e}^{{e}^{i x}}} \sin\!\left(n x\right) \, dx\right)

n \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol Notation Short description
BellNumberBnB_{n} Bell number
Factorialn!n ! Factorial
Piπ\pi The constant pi (3.14...)
ConstEee The constant e (2.718...)
ImIm(z)\operatorname{Im}(z) Imaginary part
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Powab{a}^{b} Power
ConstIii Imaginary unit
Sinsin(z)\sin(z) Sine
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("f4e249"),
    Formula(Equal(BellNumber(n), Mul(Div(Mul(2, Factorial(n)), Mul(Pi, ConstE)), Im(Integral(Mul(Pow(ConstE, Pow(ConstE, Pow(ConstE, Mul(ConstI, x)))), Sin(Mul(n, x))), For(x, 0, Pi)))))),
    Variables(n),
    Assumptions(Element(n, ZZGreaterEqual(1))),
    References("https://arxiv.org/abs/0708.3301"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC