Assumptions:
TeX:
\sum_{\chi \in G_{q}} \chi(m) \overline{\chi(n)} = \begin{cases} \varphi(q), & n \equiv m \pmod {q} \;\mathbin{\operatorname{and}}\; \gcd\!\left(m, q\right) = 1\\0, & \text{otherwise}\\ \end{cases}
q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sum | Sum | |
| Conjugate | Complex conjugate | |
| DirichletGroup | Dirichlet characters with given modulus | |
| Totient | Euler totient function | |
| GCD | Greatest common divisor | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("f4de66"),
Formula(Equal(Sum(Mul(chi(m), Conjugate(chi(n))), ForElement(chi, DirichletGroup(q))), Cases(Tuple(Totient(q), And(CongruentMod(n, m, q), Equal(GCD(m, q), 1))), Tuple(0, Otherwise)))),
Variables(q, m, n),
Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(m, ZZ), Element(n, ZZ))))