Assumptions:
TeX:
E\!\left(\phi, m\right) = \sin(\phi) R_F\!\left(\cos^{2}\!\left(\phi\right), 1 - m \sin^{2}\!\left(\phi\right), 1\right) - \frac{1}{3} m \sin^{3}\!\left(\phi\right) R_D\!\left(\cos^{2}\!\left(\phi\right), 1 - m \sin^{2}\!\left(\phi\right), 1\right) \phi \in \mathbb{C} \;\mathbin{\operatorname{and}}\; m \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \frac{-\pi}{2} \le \operatorname{Re}(\phi) \le \frac{\pi}{2}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
IncompleteEllipticE | Legendre incomplete elliptic integral of the second kind | |
Sin | Sine | |
CarlsonRF | Carlson symmetric elliptic integral of the first kind | |
Pow | Power | |
Cos | Cosine | |
CarlsonRD | Degenerate Carlson symmetric elliptic integral of the third kind | |
CC | Complex numbers | |
Pi | The constant pi (3.14...) | |
Re | Real part |
Source code for this entry:
Entry(ID("f48f54"), Formula(Equal(IncompleteEllipticE(phi, m), Sub(Mul(Sin(phi), CarlsonRF(Pow(Cos(phi), 2), Sub(1, Mul(m, Pow(Sin(phi), 2))), 1)), Mul(Mul(Mul(Div(1, 3), m), Pow(Sin(phi), 3)), CarlsonRD(Pow(Cos(phi), 2), Sub(1, Mul(m, Pow(Sin(phi), 2))), 1))))), Variables(phi, m), Assumptions(And(Element(phi, CC), Element(m, CC), LessEqual(Div(Neg(Pi), 2), Re(phi), Div(Pi, 2)))))