Assumptions:
TeX:
\left(x - n + 1\right)_{n} = \sum_{k=0}^{n} s\!\left(n, k\right) {x}^{k} n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
RisingFactorial | Rising factorial | |
StirlingS1 | Signed Stirling number of the first kind | |
Pow | Power | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("f46e0e"), Formula(Equal(RisingFactorial(Add(Sub(x, n), 1), n), Sum(Mul(StirlingS1(n, k), Pow(x, k)), Tuple(k, 0, n)))), Variables(x, n), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(x, CC))))