Assumptions:
References:
- https://doi.org/10.1016/0022-0728(88)87001-3
TeX:
\int_{0}^{\infty} {e}^{-a t} \theta'_{1}\!\left(0 , i t\right) \, dt = 2 \pi \frac{1}{\cosh\!\left(\sqrt{\pi a}\right)} a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Integral | Integral | |
Exp | Exponential function | |
JacobiTheta | Jacobi theta function | |
ConstI | Imaginary unit | |
Infinity | Positive infinity | |
Pi | The constant pi (3.14...) | |
Sqrt | Principal square root | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("f42652"), Formula(Equal(Integral(Mul(Exp(Mul(Neg(a), t)), JacobiTheta(1, 0, Mul(ConstI, t), 1)), For(t, 0, Infinity)), Mul(Mul(2, Pi), Div(1, Cosh(Sqrt(Mul(Pi, a))))))), Variables(a), Assumptions(And(Element(a, CC), Greater(Re(a), 0))), References("https://doi.org/10.1016/0022-0728(88)87001-3"))