Assumptions:
TeX:
\sum_{n=0}^{\infty} \frac{1}{{\left(n + a\right)}^{r}} = \frac{{\left(-1\right)}^{r}}{\left(r - 1\right)!} \psi^{(r - 1)}\!\left(a\right)
r \in \mathbb{Z}_{\ge 2} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \notin \{0, -1, \ldots\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sum | Sum | |
| Pow | Power | |
| Infinity | Positive infinity | |
| Factorial | Factorial | |
| DigammaFunction | Digamma function | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers | |
| ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("f42042"),
Formula(Equal(Sum(Div(1, Pow(Add(n, a), r)), For(n, 0, Infinity)), Mul(Div(Pow(-1, r), Factorial(Sub(r, 1))), DigammaFunction(a, Sub(r, 1))))),
Variables(r, a),
Assumptions(And(Element(r, ZZGreaterEqual(2)), Element(a, CC), NotElement(a, ZZLessEqual(0)))))