Assumptions:
TeX:
R_C\!\left(x, y\right) = \frac{1}{2} \int_{0}^{\infty} \frac{1}{\left(t + y\right) \sqrt{t + x}} \, dt
x \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \setminus \left(-\infty, 0\right]Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRC | Degenerate Carlson symmetric elliptic integral of the first kind | |
| Integral | Integral | |
| Sqrt | Principal square root | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| OpenInterval | Open interval | |
| OpenClosedInterval | Open-closed interval |
Source code for this entry:
Entry(ID("f3b8dc"),
Formula(Equal(CarlsonRC(x, y), Mul(Div(1, 2), Integral(Div(1, Mul(Add(t, y), Sqrt(Add(t, x)))), For(t, 0, Infinity))))),
Variables(x, y),
Assumptions(And(Element(x, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(y, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))