Fungrim home page

Fungrim entry: f303c9

(r2+4rn2+4)In(r+2) ⁣(0)(r+1)(r+2)In(r) ⁣(0)=0\left({r}^{2} + 4 r - {n}^{2} + 4\right) I^{(r + 2)}_{n}\!\left(0\right) - \left(r + 1\right) \left(r + 2\right) I^{(r)}_{n}\!\left(0\right) = 0
Assumptions:nZ  and  rZ0n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
TeX:
\left({r}^{2} + 4 r - {n}^{2} + 4\right) I^{(r + 2)}_{n}\!\left(0\right) - \left(r + 1\right) \left(r + 2\right) I^{(r)}_{n}\!\left(0\right) = 0

n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol Notation Short description
Powab{a}^{b} Power
BesselIIν ⁣(z)I_{\nu}\!\left(z\right) Modified Bessel function of the first kind
ZZZ\mathbb{Z} Integers
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("f303c9"),
    Formula(Equal(Sub(Mul(Add(Sub(Add(Pow(r, 2), Mul(4, r)), Pow(n, 2)), 4), BesselI(n, 0, Add(r, 2))), Mul(Mul(Add(r, 1), Add(r, 2)), BesselI(n, 0, r))), 0)),
    Variables(n, r),
    Assumptions(And(Element(n, ZZ), Element(r, ZZGreaterEqual(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC