Assumptions:
TeX:
\frac{\theta_{2}\!\left(0 , \tau\right)}{\theta_{3}\!\left(0 , \tau\right)} = 2 {e}^{\pi i \tau / 4} \prod_{n=1}^{\infty} {\left(\frac{1 + {q}^{2 n}}{1 + {q}^{2 n - 1}}\right)}^{2}\; \text{ where } q = {e}^{\pi i \tau}
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| Exp | Exponential function | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| Product | Product | |
| Pow | Power | |
| Infinity | Positive infinity | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("f1f42f"),
Formula(Equal(Div(JacobiTheta(2, 0, tau), JacobiTheta(3, 0, tau)), Where(Mul(Mul(2, Exp(Div(Mul(Mul(Pi, ConstI), tau), 4))), Product(Pow(Div(Add(1, Pow(q, Mul(2, n))), Add(1, Pow(q, Sub(Mul(2, n), 1)))), 2), For(n, 1, Infinity))), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))),
Variables(tau),
Assumptions(Element(tau, HH)))