# Fungrim entry: f1e02b

$\psi^{(m)}\!\left(z\right) = \frac{d^{m + 1}}{{d z}^{m + 1}} \left[\log \Gamma(z)\right]$
Assumptions:$m \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\}$
TeX:
\psi^{(m)}\!\left(z\right) = \frac{d^{m + 1}}{{d z}^{m + 1}} \left[\log \Gamma(z)\right]

m \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\}
Definitions:
Fungrim symbol Notation Short description
DigammaFunction$\psi\!\left(z\right)$ Digamma function
ComplexBranchDerivative$\frac{d}{d z}\, f\!\left(z\right)$ Complex derivative, allowing branch cuts
LogGamma$\log \Gamma(z)$ Logarithmic gamma function
ZZGreaterEqual$\mathbb{Z}_{\ge n}$ Integers greater than or equal to n
CC$\mathbb{C}$ Complex numbers
ZZLessEqual$\mathbb{Z}_{\le n}$ Integers less than or equal to n
Source code for this entry:
Entry(ID("f1e02b"),
Formula(Equal(DigammaFunction(z, m), ComplexBranchDerivative(Brackets(LogGamma(z)), For(z, z, Add(m, 1))))),
Variables(m, z),
Assumptions(And(Element(m, ZZGreaterEqual(0)), Element(z, CC), NotElement(z, ZZLessEqual(0)))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC