Assumptions:
TeX:
\psi^{(m)}\!\left(z\right) = \frac{d^{m + 1}}{{d z}^{m + 1}} \left[\log \Gamma(z)\right] m \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DigammaFunction | Digamma function | |
ComplexBranchDerivative | Complex derivative, allowing branch cuts | |
LogGamma | Logarithmic gamma function | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("f1e02b"), Formula(Equal(DigammaFunction(z, m), ComplexBranchDerivative(Brackets(LogGamma(z)), For(z, z, Add(m, 1))))), Variables(m, z), Assumptions(And(Element(m, ZZGreaterEqual(0)), Element(z, CC), NotElement(z, ZZLessEqual(0)))))