Assumptions:
TeX:
z \left(1 - z\right) y''(z) + \left(c - \left(a + b + 1\right) z\right) y'(z) - a b y(z) = 0\; \text{ where } y(z) = \,{}_2F_1\!\left(a, b, c, z\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left[1, \infty\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
Hypergeometric2F1 | Gauss hypergeometric function | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n | |
ClosedOpenInterval | Closed-open interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("f1bd89"), Formula(Where(Equal(Sub(Add(Mul(Mul(z, Sub(1, z)), ComplexDerivative(y(z), For(z, z, 2))), Mul(Sub(c, Mul(Add(Add(a, b), 1), z)), ComplexDerivative(y(z), For(z, z, 1)))), Mul(Mul(a, b), y(z))), 0), Equal(y(z), Hypergeometric2F1(a, b, c, z)))), Variables(a, b, c, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, SetMinus(CC, ZZLessEqual(0))), Element(z, SetMinus(CC, ClosedOpenInterval(1, Infinity))))))